TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 357, Number 1, Pages 309–335 S 0002-9947(04)03478-6 Article electronically published on April 27, 2004

GLAUBERMAN-WATANABE CORRESPONDING p-BLOCKS OF FINITE GROUPS WITH NORMAL DEFECT GROUPS ARE MORITA EQUIVALENT

MORTON E. HARRIS

ABSTRACT. Let G be a finite group and let A be a solvable finite group that acts on G such that the orders of G and A are relatively prime. Let b be a p-block of G with normal defect group D such that A stabilizes b and $D \leq C_G(A)$. Then there is a Morita equivalence between the block b and its Watanabe correspondent block W(b) of $C_G(A)$ given by a bimodule M with vertex ΔD and trivial source that on the character level induces the Glauberman correspondence (and which is an isotypy by a theorem of Watanabe).

Introduction and statements

This study was suggested by the work of S. Koshitani and G. Michler in [13]. The Theory of Blocks of Finite Groups was introduced and significantly developed by R. Brauer in [1] and [2]. Clearly Brauer's First Main Theorem (in [1]) underlines the importance of studying a block B of a finite group G with normal defect group D. In [16], W.F. Reynolds, using Clifford Theory, presented a deep analysis of the character theory of such a block B. In [15], B. Külshammer, using fundamental Clifford theoretic methods of E.C. Dade, showed that, in the context of a standard "p-modular system" $(\mathcal{K}, \mathcal{O}, k = \mathcal{O}/J(\mathcal{O}))$, the block algebra \mathcal{A} over \mathcal{O} of such a block B is \mathcal{O} -algebra isomorphic to a full matrix algebra over a twisted group algebra \mathcal{B} over \mathcal{O} of the group \mathcal{N} of [16]. In our main theorem (Theorem 2), we use the approach of [8] and [15] to demonstrate that the Morita equivalence between A and B is given by a bimodule with a diagonal vertex and trivial source. Moreover we are able to incorporate the Glauberman-Watanabe context into the analysis to demonstrate that there is such a Morita equivalence that gives the Glauberman correspondence on the character level. This analysis also extends the character theoretic analysis of W.F. Reynolds in [16].

Throughout this section, G will denote a finite group and A will denote a solvable finite group that acts on G on the right and such that (|G|, |A|) = 1. Let $C = C_G(A)$ and let Irr(G) and $Irr(G)^A$ denote the sets of ordinary irreducible and A-invariant ordinary irreducible characters of G, respectively. In [6], G. Glauberman produced a bijection $\pi(G, A) : Irr(G)^A \to Irr(C)$ satisfying natural basic properties (cf. [10, Theorem 13.1]).

Let p be a prime and let \mathcal{O} be a complete discrete valuation ring of characteristic zero such that $k = \mathcal{O}/J(\mathcal{O})$ is an algebraically closed field of prime characteristic

Received by the editors October 9, 2002 and, in revised form, July 29, 2003. 2000 Mathematics Subject Classification. Primary 20C20.

p and such that if \mathcal{K} is the fraction field of \mathcal{O} , then $(\mathcal{K}, \mathcal{O}, k)$ is "big enough" for all subgroups of $G \rtimes A$. As is standard, the natural ring epimorphism $-: \mathcal{O} \to \mathcal{O}/J(\mathcal{O}) = k$ induces a natural \mathcal{O} -algebra epimorphism $-: \mathcal{A} \to \bar{\mathcal{A}} = \mathcal{A}/J(\mathcal{O})\mathcal{A}$ for any \mathcal{O} -algebra \mathcal{A} .

Let $B\ell(G)$ and $B\ell(G)^A$ denote the set of p-blocks of G and of A-stable p-blocks of G, resp., in this context. Let $b \in B\ell(G)^A$ with defect group D such that $D \leq C = C_G(A)$. In [19, Theorems 1 and 2] A. Watanabe proved that then $\operatorname{Irr}(b) \subseteq \operatorname{Irr}(G)^A$ and $\{\pi(G,A)(\chi) \mid \chi \in \operatorname{Irr}(b)\}$ is the set of ordinary irreducible characters of a p-block of C with defect group D which we shall denote by W(b). Moreover, she also proved that the Glauberman correspondence induces an isotypy between b and W(b) ([19, Theorem 2]).

Clearly A acts on $N_G(D)$ and the Brauer correspondent p-block $Br_D(b)$ of b is an A-stable p-block of $N_G(D)$ with defect group D. Also the Brauer correspondent $Br_D(W(b))$ is a p-block of $N_C(D)$ with defect group D and $W(Br_D(b))$ is also a p-block of $N_C(D)$ with defect group D.

For the convenience of the reader, we include a reformulation and an alternate proof of a result of S. Koshitani and G. Michler ([14, Theorem 2.12]) that links our main result presented below with the general Glauberman-Watanabe correspondence described above.

Theorem 1. $W(Br_D(b)) = Br_D(W(b))$.

For our main result, we also assume that the defect group D of b is normal in G and hence normal in C. In the main result (Proposition 3.3) of [14], S. Koshitani and G. Michler demonstrated that, in this case, the k-algebras $kG\bar{b}$ and $kC\overline{W}(\bar{b})$ are Morita equivalent. The first part of our main result (Theorem 2), just below, stating that there is a Morita equivalence "over \mathcal{O} " (that induces a Morita equivalence "over k") is essentially in the paper [14]. In fact, S. Koshitani observed this fact in [13]. Moreover this "lifting from k to \mathcal{O} " is to be expected in view of the work of L. Puig for blocks with a normal defect group (cf. [18, Section 45 and Proposition 38.8]). Since "coefficients in \mathcal{O} " provides the connection in finite group representation theory between the characteristic p and classical characteristic 0 representation theories, such investigations are very important.

Our main result is:

Theorem 2. In this situation, there is a Morita equivalence between the block algebras $(\mathcal{O}G)b$ and $(\mathcal{O}C)W(b)$ given by an indecomposable $(\mathcal{O}G)b$ -mod- $(\mathcal{O}C)W(b)$ bimodule M with the following properties:

- (i) when viewed as an $\mathcal{O}(G \times C)$ -module, M has $\Delta D = \{(u, u) \mid u \in D\}$ as a vertex and a trivial $\mathcal{O}\Delta D$ -source; and
- (ii) the bijection between the sets of ordinary irreducible characters $\operatorname{Irr}_{\mathcal{K}}(G,b)$ and $\operatorname{Irr}_{\mathcal{K}}(C,W(b))$ induced by the Morita equivalence given by M is precisely the Glauberman correspondence.

Theorems 1 and 2 immediately yield:

Corollary 3. In the Glauberman-Watanabe context $(G, A, b \in B\ell(G)^A, C = C_G(A), W(b), D \leq C)$, the Brauer correspondent blocks $(N_G(D), Br_D(b))$ and $(N_C(D), Br_D(W(b)))$ are Morita equivalent with an equivalence given by an indecomposable $\mathcal{O}N_G(D)Br_D(b)$ -mod- $(\mathcal{O}N_C(D)Br_D(W(b)))$ bimodule M such that, when viewed as an $\mathcal{O}(N_G(D) \times N_C(D))$ -module, M has $\Delta D = \{(u, u) \mid u \in D\}$

as a vertex and a trivial $\mathcal{O}(\Delta D)$ -source. Moveover the bijection between the sets of ordinary irreducible characters $\operatorname{Irr}_{\mathcal{K}}(N_G(D), Br_D(b))$ and $\operatorname{Irr}_{\mathcal{K}}(N_C(D), Br_D(W(b)))$ induced by the Morita equivalence is precisely the Glauberman correspondence.

Clearly the main result (Proposition 3.3) of [14] is a consequence of Theorem 2. Our notation is standard and tends to follow the notation of [5], [9] and [10]. In particular, all rings are assumed to have identities.

Section 1 is comprised of a variety of results that are required for our proofs of Theorems 1 and 2 which are presented in Section 2.

The author thanks Everett C. Dade for his wise and helpful comments.

1. Preliminary results

Let m be a positive integer and let Q be an abelian group. By definition, Q is said to be m-divisible if for each $x \in Q$ there is a $y \in Q$ such that $y^m = x$, in which case Q is also n-divisible whenever $n \mid m$.

The proof of [10, Lemma 11.14] is readily adapted to prove:

Lemma 1.1. Let Q be a subgroup of an abelian group M such that |M/Q| is finite. Assume also that Q is |M/Q|-divisible. Then Q is complemented in M.

Let M be an abelian group on which a finite group G of order m acts trivially. The following results are well known and easy to verify.

Lemma 1.2. Let $c \in Z^2(G, M)$. Then

- (a) c(g,1) = c(1,1) = c(1,g) for all $g \in G$;
- (b) $c(g, g^{-1}) = c(g^{-1}, g) \text{ for all } g \in G;$
- (c) if $c': G \times G \to M$ is defined by $c'(g,h) = c(g,h)c(1,1)^{-1}$ for all $(g,h) \in G \times G$, then $c' \in Z^2(G,M)$ and c'(g,1) = c'(1,g) = 1 for all $g \in G$;
- (d) assume that c(g,1) = 1 = c(1,g) for all $g \in G$ and let $Z = \langle c(g,h) | (g,h) \in G \times G \rangle$, so that $Z \leq M$. Let $\hat{G} = Z \times G$ and define a multiplication on \hat{G} by

$$(z_1, g_1)(z_2, g_2) = (z_1 z_2 c(g_1, g_2), g_1 g_2)$$

for all $z_1, z_2 \in Z$ and all $g_1, g_2 \in G$. Then \hat{G} is a group with identity (1,1) and $(z,g)^{-1} = (z^{-1}c(g,g^{-1})^{-1},g^{-1})$ for all $z \in Z$ and $g \in G$. Also

$$(1.1) 1 \to Z \xrightarrow{i} \hat{G} \xrightarrow{\pi_1} G \to 1$$

is a short exact sequence of groups where π_1 is the first component projection and $i: Z \to G$ is defined by $z \mapsto (z,1)$ for all $z \in Z$, so that $i(Z) \leq Z(\hat{G})$. Suppose also that the group E acts on G on the right and $c(g^e, h^e) = c(g, h)$ for all $g, h \in G$ and all $e \in E$. Let E act trivially on the right on Z and diagonally on $Z \times G$. Then E acts on the group $\hat{G} = Z \times G$ and (1.1) is a short exact sequence of E-groups.

Remark 1.3. Suppose that $(\mathcal{K}, \mathcal{O}, k)$ is a p-modular system for the finite group G, that G acts trivially on \mathcal{O}^{\times} , and that $c \in Z^2(G, \mathcal{O}^{\times})$ with c(g, 1) = 1 = c(1, g) for all $g \in G$. Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{O}\tau_g$ be an associated twisted group \mathcal{O} -algebra over G, where $\tau_g \tau_h = c(g, h) \tau_{gh}$ for all $g, h \in G$. Then $1_{\mathcal{A}} = \tau_1$ and $(\tau_g)^{-1} = c(g, g^{-1})^{-1} t_{g^{-1}}$ for all $g \in G$.

Suppose also that $Z = \langle c(g,h)|g,h \in G \rangle$ is a finite (and hence cyclic) subgroup of \mathcal{O}^{\times} of order n with (n,p) = 1. Let $\hat{G} = Z \times G$ be as above and let $\hat{e} = \frac{1}{n} \sum_{z \in Z} z^{-1}(z,1) \in \mathcal{O}i(Z) \leq Z(\mathcal{O}\hat{G})$. Then \hat{e} is a block idempotent of $\mathcal{O}i(Z)$ and is central in $\mathcal{O}\hat{G}$. Also $\mathcal{O}\hat{G}$ is a G-crossed product \mathcal{O} -algebra with $(\mathcal{O}\hat{G})_g = \mathcal{O}(g)$

 $(\mathcal{O}i(Z))(1,g)$ for all $g \in G$ and $(z,g)\hat{e} = z(1,g)\hat{e}$ for all $z \in Z$ and all $g \in G$. Hence $(\mathcal{O}\hat{G})\hat{e} = \bigoplus_{g \in G} \mathcal{O}(1,g)\hat{e}$ in \mathcal{O} -mod and the \mathcal{O} linear map $\alpha : (\mathcal{O}\hat{G})\hat{e} \to \mathcal{A}$ such that $(1,g)\hat{e} \mapsto \tau_g$ for all $g \in G$ is an \mathcal{O} -algebra isomorphism. Here $(\mathcal{O}\hat{G})\hat{e}$ is the direct sum of the block algebras of \hat{G} that cover the block \hat{e} of $\mathcal{O}i(Z)$.

As above, let the finite group G of order m act trivially on the abelian group M. Assume also that M is m-divisible and that $\Omega_m(M) = \{x \in M \mid x^m = 1\}$ is finite. Let $U = \{c \in Z^2(G,M) \mid c^m = 1\}$, so that U is a finite subgroup of $Z^2(G,M)$. Note that $H^2(G,M)$ has exponent dividing m = |G| ([9, I, Satz 16.19]) and that $B^2(G,M)$ is m-divisible.

The proof of [10, Theorem 11.15] yields:

Lemma 1.4. Under these conditions, there is a subgroup $W \le U$ such that $Z^2(G, M) = B^2(G, M) \times W$ and hence $H^2(G, M) \cong W$.

Let R be a commutative ring.

Lemma 1.5. Let A be an R-algebra and let S be an R-subalgebra of A such that $S = M_r(R)$ as R-algebras, where $M_r(R)$ is the R-algebra of all $r \times r$ matrices over R for some positive integer r. Then:

- (a) $C_{\mathcal{A}}(\mathcal{S}^{\times}) = C_{\mathcal{A}}(\mathcal{S})$; and
- (b) $N_{\mathcal{A}^{\times}}(\mathcal{S}^{\times}) = N_{\mathcal{A}^{\times}}(\mathcal{S}).$

Proof. Clearly $C_{\mathcal{A}}(\mathcal{S}) \subseteq C_{\mathcal{A}}(\mathcal{S}^{\times})$ and $N_{\mathcal{A}^{\times}}(\mathcal{S}) \subseteq N_{\mathcal{A}^{\times}}(\mathcal{S}^{\times})$ since $1_{\mathcal{S}}^{\alpha} = 1_{\mathcal{S}} \in \mathcal{S}^{\times}$ for all $\alpha \in N_{\mathcal{A}^{\times}}(\mathcal{S})$. If r = 1, then $\mathcal{S} = R1_{\mathcal{S}}$. Hence $C_{\mathcal{A}}(\mathcal{S}^{\times}) \subseteq C_{\mathcal{A}}(\mathcal{S})$, $N_{\mathcal{A}^{\times}}(\mathcal{S}^{\times}) \subseteq N_{\mathcal{A}^{\times}}(\mathcal{S})$ and we are done. Assume that $r \geq 2$. Clearly if $x \in \mathcal{S}$, then $x \in \mathcal{S}^{\times}$ if and only if $\det(x) \in R^{\times}$. Also \mathcal{S} has an R-basis $\{E_{ij} | 1 \leq i, j \leq r\}$ such that

$$E_{ij}E_{mn} = \begin{cases} 0 & \text{if } j \neq m, \\ E_{in} & \text{if } j = m. \end{cases}$$

Let $\alpha \in C_{\mathcal{A}}(\mathcal{S}^{\times})$. Then $\alpha 1_{\mathcal{S}} = 1_{\mathcal{S}}\alpha$ and $\alpha (1_{\mathcal{S}} + E_{ij}) = (1_{\mathcal{S}} + E_{ij})\alpha$ for all $1 \leq i, j \leq r$ with $i \neq j$. Thus $\alpha E_{ij} = E_{ij}\alpha$ and $\alpha E_{ii} = \alpha E_{ij}E_{ji} = E_{ij}E_{ji}\alpha = E_{ii}\alpha$ for all $1 \leq i, j \leq r$ with $i \neq j$. Consequently (a) holds. A similar argument demonstrates that if $\alpha \in N_{\mathcal{A}^{\times}}(\mathcal{S}^{\times})$, then $1_{\mathcal{S}}^{\alpha} = 1_{\mathcal{S}}$, $(1_{\mathcal{S}} + E_{ij})^{\alpha} = 1_{\mathcal{S}} + E_{ij}^{\alpha}$ and $E_{ij}^{\alpha} \in \mathcal{S}$ for all $1 \leq i, j \leq r$ with $i \neq j$. Thus $E_{ii}^{\alpha} = (E_{ij}E_{ji})^{\alpha} = E_{ij}^{\alpha}E_{ji}^{\alpha} \in \mathcal{S}$ for all $1 \leq i, j \leq r$ with $i \neq j$, $\mathcal{S}^{\alpha} \subseteq \mathcal{S}$ and $\mathcal{S}^{\alpha^{-1}} \subseteq \mathcal{S}$ and hence $\mathcal{S}^{\alpha} = \mathcal{S}$ and (b) follows.

Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ be a G-graded R-algebra (cf. [4]). For each $X \subseteq G$, let $\mathcal{A}_X = \bigoplus_{x \in X} \mathcal{A}_x$, so that if $H \leq G$, then \mathcal{A}_H is an H-graded R-subalgebra of \mathcal{A} since $1_{\mathcal{A}} \in \mathcal{A}_1$.

Lemma 1.6. Let $H \leq G$, let b be an idempotent of A_H and let $\alpha \in bA_Hb$. Suppose that there is an element $\beta \in A$ such that $\alpha\beta = b$ and $\beta\alpha = b$ (so that $\alpha(b\beta b) = b$ and $(b\beta b)\alpha = b$). Then $b\beta b \in bA_Hb$.

Proof. First suppose that $b=1_{\mathcal{A}}$ and let \mathcal{T} be a right transversal of H in G with $1\in\mathcal{T}$ so that $G=\bigcup_{t\in\mathcal{T}}Ht$, where the union is disjoint. Let $\beta=\sum_{\substack{h\in H\\t\in\mathcal{T}}}b_{ht}$, where $b_{ht}\in\mathcal{A}_{ht}$ for all $h\in H$ and $t\in\mathcal{T}$. Then $1_{\mathcal{A}}=\sum_{t\in\mathcal{T}}(\alpha(\sum_{h\in H}b_{ht}))\in\mathcal{A}_1$, where $\alpha(\sum_{h\in H}b_{ht})\in\mathcal{A}_{Ht}$ for all $t\in\mathcal{T}$. Thus if $t\neq 1$, then $\alpha(\sum_{h\in H}b_{ht})=0$ and so $(\sum_{h\in H}b_{ht})=0$ since α is a unit. Consequently $\beta\in\mathcal{A}_{H}$. For the general case, set $\alpha^*=\alpha+(1_{\mathcal{A}}-b)$ and $\beta^*=b\beta b+(1_{\mathcal{A}}-b)$. Then $\alpha^*\beta^*=1_{\mathcal{A}}=\beta^*\alpha^*$, where $\alpha^*\in\mathcal{A}_{H}$. By the case above, we conclude that $\beta^*=b\beta b+(1_{\mathcal{A}}-b)\in\mathcal{A}_{H}$ and hence $b\beta b\in b\mathcal{A}_{H}b$ and we are done.

Let $\mathcal{A} = \bigoplus_{a \in G} \mathcal{A}_a$ be a G-graded crossed-product R-algebra (with an identity $1_{\mathcal{A}} \in \mathcal{A}_1$) and assume that \mathcal{A}_1 is commutative. Thus $\mathcal{A}_q \cap \mathcal{A}^{\times}$ is nonempty for each $g \in G$. Here we have the short exact sequence of groups

$$1 \to \mathcal{A}_1^{\times} \to \mathcal{G}r(\mathcal{A}^{\times}) \stackrel{\mathrm{deg}}{\to} G \to 1$$

and G acts on A_1 (on the right) as defined by

$$\alpha^g = \alpha^{u_g} = u_q^{-1} \alpha u_q$$
 for all $\alpha \in \mathcal{A}_1$

for some (and hence every) $u_g \in \mathcal{A}_g \cap \mathcal{A}^{\times}$ for each $g \in G$. For each $g \in G$, choose $u_g \in \mathcal{A}_g \cap \mathcal{A}^{\times}$. Here $\mathcal{A}_g = \mathcal{A}_1 u_g = u_g \mathcal{A}_1$ and $u_g u_h = \mathcal{A}_1 u_g = u_g \mathcal{A}_1$ $u_{gh}c(g,h)$ for a unique $c(g,h) \in \mathcal{A}_1^{\times}$ for all $g,h \in G$ and $c \in \mathbb{Z}^2(G,\mathcal{A}_1^{\times})$. Clearly multiplication in A is determined by A_1 , the action of G on A_1 and the element $c \in Z^2(G, \mathcal{A}_1^{\times})$. Also, the element $cB^2(G, \mathcal{A}_1^{\times})$ is independent of the choices of the elements $u_g \in \mathcal{A}_g \cap \mathcal{A}^{\times}$ for all $g \in G$.

Let $\mathcal{B} = \bigoplus_{q \in G} \mathcal{B}_q$ also be a G-graded crossed product R-algebra (with an identity $1_{\mathcal{B}} \in \mathcal{B}_1$) and let $\sigma : \mathcal{A}_1 \to \mathcal{B}_1$ be an R-algebra isomorphism (so that \mathcal{B}_1 is commutative) such that σ commutes with the action of G on A_1 and on B_1 (i.e., $\sigma(\alpha^g) = \sigma(\alpha)^g$ for all $\alpha \in \mathcal{A}_1$ and all $g \in G$). Let $s: H^2(G, \mathcal{A}_1^{\times}) \to H^2(G, \mathcal{B}_1^{\times})$ be the group isomorphism induced by σ .

The following result is easy to prove and well known:

Proposition 1.7. There is a G-graded R-algebra isomorphism $\tilde{\sigma}: \mathcal{A} \to \mathcal{B}$ that extends σ if and only if $s(cB^2(G, \mathcal{A}_1^{\times}))$ is the element of $H^2(G, \mathcal{B}_1^{\times})$ determined by the action of G on \mathcal{B}_1 via \mathcal{B} .

As in the Introduction, we let \mathcal{O} be a complete discrete valuation ring of characteristic zero such that $k = \mathcal{O}/J(\mathcal{O})$ is an algebraically closed field of prime characteristic p. Let K denote the field of fractions of \mathcal{O} . Such rings exist (cf. [17, II, Theorem 3]) and satisfy [18, assumption (2.1)]. Moreover by [17, II, Proposition 8]: (1.2) there is a multiplicative injection $f: k \to \mathcal{O}$ such that

- (a) $f(y) + J(\mathcal{O}) = y$ for all $y \in k = \mathcal{O}/J(\mathcal{O})$; and
- (b) if $x \in \mathcal{O}$, then $x \in f(k)$ if and only if x is a p^n -power in \mathcal{O} for every integer

Thus $f(1_k) = 1_{\mathcal{O}}, f(k^{\times}) \leq \mathcal{O}^{\times}, \mathcal{O}^{\times} = f(k^{\times}) \times (1 + J(\mathcal{O})),$ any element of \mathcal{O}^{\times} of finite order prime to p lies in $f(k^{\times})$ (cf. [18, Lemma 2.3]) and $f:k^{\times}\to f(k^{\times})$ is a group isomorphism.

For the remainder of this section, we shall also assume that every \mathcal{O} -algebra \mathcal{A} is finitely generated in \mathcal{O} -mod. Consequently $\mathcal{A}/J(\mathcal{A})$ is a finite-dimensional split semi-simple k-algebra. We denote the unity element of \mathcal{A} by $1_{\mathcal{A}}$ (or sometimes simply by 1). Also we shall assume that every A-module is a finitely generated and unitary A-module. Note that every free \mathcal{O} -module is a torsion free \mathcal{O} -module.

If r is a positive integer, then $M_r(k)$ and $M_r(\mathcal{O})$ will denote the \mathcal{O} -algebras of all $r \times r$ matrices over k and \mathcal{O} , respectively. As in [18, Section 7], an \mathcal{O} -algebra \mathcal{S} is called \mathcal{O} -simple if \mathcal{S} is \mathcal{O} -algebra isomorphic to some $M_r(\mathcal{O})$ and \mathcal{S} is said to be \mathcal{O} -semi-simple if \mathcal{S} is \mathcal{O} -algebra isomorphic to a direct sum of \mathcal{O} -simple \mathcal{O} -algebras.

Let \mathcal{A} be an \mathcal{O} -algebra and let m be a positive integer with (m,p)=1. Let $\mu: \mathcal{A} \to \mathcal{A}$ be the function such that $x \mapsto x^m$ for all $x \in \mathcal{A}$.

Proposition 1.8. μ induces a bijection of $1_A + J(A)$ onto itself.

To prove this, we set J = J(A) and note the following two trivialities.

Lemma 1.9. Let \mathcal{G} be a not necessarily finite group and let $x, y \in \mathcal{G}$ be such that $x^m = y$ and $|x| | p^k$ for some positive integer $k \geq 1$. Then $x = y^a$ for any $a, b \in \mathbb{Z}$ such that $1 = ma + p^k b$. Hence if x_1, x_2 are p-elements of \mathcal{G} such that $x_1^m = y = x_2^m$, then $x_1 = x_2$.

Lemma 1.10. Let n, k be positive integers. Then:

- (a) $(J^n/J^{n+1},+)$ is an abelian group of exponent p;
- (b) the map $J^n \mapsto 1_{\mathcal{A}} + J^n$ such that $a \mapsto 1_{\mathcal{A}} + a$ for all $a \in J^n$ induces a group isomorphism of $(J^n/J^{n+1}, +)$ onto the multiplicative group $(1_{\mathcal{A}} + J^n)/(1_{\mathcal{A}} + J^{n+1})$; and
 - (c) the multiplicative group $(1_A + J^n)/(1_A + J^{n+k})$ has exponent dividing p^k .

Proof of Proposition 1.8. By [18, Lemma 45.5], we have

$$1_{\mathcal{A}} + J = \lim((1_{\mathcal{A}} + J)/(1_{\mathcal{A}} + J^n)).$$

For each integer $k \geq 1$, choose $a_k, b_k \in Z$ such that $ma_k + p^k b_k = 1$. Assume that $a_0 = 0$ and $b_0 = 1$. Let $y \in 1_{\mathcal{A}} + J$. If $k \geq 1$, then $y^{a_k}(1 + J^{k+1})$ is the unique element w of $(1_{\mathcal{A}} + J)/(1_{\mathcal{A}} + J^{k+1})$ such that $w^m = y(1_{\mathcal{A}} + J^{k+1})$ by Lemmas 1.9 and 1.10(c). Moreover, $(y^{a_k}(1_{\mathcal{A}} + J^k))^m = y(1_{\mathcal{A}} + J^k)$ so that $y^{a_k}(1_{\mathcal{A}} + J^k) = y^{a_{k-1}}(1_{\mathcal{A}} + J^k)$. Thus $u = (y(1_{\mathcal{A}} + J), y^{a_1}(1_{\mathcal{A}} + J^2), y^{a_2}(1_{\mathcal{A}} + J^3), \ldots)$ is an element of $\lim_{k \to \infty} ((1_{\mathcal{A}} + J)/(1_{\mathcal{A}} + J^n))$ such that

$$u^m = (y(1_A + J), y(1_A + J^2), y(1_A + J^3), \dots) = y.$$

Assume that $z=(z_0(1_A+J),\ z_1(1_A+J^2),\ z_2(1_A+J^3),\dots)$ is an element of $\varprojlim ((1_A+J)/(1_A+J^n))$ such that $z^m=y$. Then $(z_k(1_A+J^{k+1}))^m=y(1_A+J^{k+1})$ and Lemmas 1.9 and 1.10(c) imply that

$$z_k(1_A + J^{k+1}) = y^{a_k}(1_A + J^{k+1})$$

for all $k \geq 0$. Thus z = u and we are done.

We continue with this situation. We shall require the following extension of $[18, Lemma\ 45.6]$.

Let X be a group containing $1_{\mathcal{A}} + J(\mathcal{A})$ as a normal subgroup. Assume also that the subgroup $1_{\mathcal{A}} + (J(\mathcal{A})^n)$ is normal in X for every integer $n \geq 1$ and that E is a finite subgroup of X with |E| = m relatively prime to p such that $X = (1_{\mathcal{A}} + J(\mathcal{A}))E$. Thus $E \cap (1_{\mathcal{A}} + J(\mathcal{A})) = 1_{\mathcal{A}}$ by Proposition 1.8.

Lemma 1.11. Let $e \in E$ and let $x \in (1_A + J(A))e$ be of order prime to p. Then there is an element $j \in J(A)$ such that $x^{1_A+j} = e$.

Proof. Clearly we may assume that $X = (1_{\mathcal{A}} + J(\mathcal{A}))\langle e \rangle$. Let $\alpha = |x|$ and $\beta = |e|$. Then $x^{\alpha} \in 1_{\mathcal{A}} + J(\mathcal{A})$ and hence $\alpha = \beta s$ for some positive integer s. Here $x^{\beta} \in 1_{\mathcal{A}} + J(\mathcal{A})$ and $(x^{\beta})^{s} = 1_{\mathcal{A}}$. Since $(\alpha, p) = 1$, we conclude that (s, p) = 1. Thus $x^{\beta} = 1_{\mathcal{A}}$ because of Proposition 1.8. Consequently $\alpha = \beta$. Since $X = (1_{\mathcal{A}} + J(\mathcal{A}))\langle x \rangle$ and $\langle x \rangle \cap (1_{\mathcal{A}} + J(\mathcal{A})) = 1_{\mathcal{A}}$, [18, Lemma 45.6] yields an element $j \in J(\mathcal{A})$ such that $\langle x \rangle^{1_{\mathcal{A}} + j} = \langle e \rangle$. Then $x^{1_{\mathcal{A}} + j} \in \langle e \rangle \cap ((1 + J(\mathcal{A}))e) = \{e\}$ and we are done.

Let \mathcal{A} be an \mathcal{O} -free \mathcal{O} -algebra. Then, as in [18, Theorem 7.3], there is an \mathcal{O} -semi-simple \mathcal{O} -subalgebra \mathcal{S} such that $\mathcal{A} = \mathcal{S} + J(\mathcal{A})$ and, in fact, \mathcal{S} is a maximal \mathcal{O} -semi-simple \mathcal{O} -subalgebra of \mathcal{A} . We require the following observations in this context.

Proposition 1.12. (a) $J(A) \cap S = J(O)S = J(S)$ and S/(J(O)S) is a k-semi-simple k-algebra;

- (b) $1_{\mathcal{A}} = 1_{\mathcal{S}} \text{ and } \mathcal{S} \cap (1_{\mathcal{A}} + J(\mathcal{A})) = \mathcal{S}^{\times} \cap (1_{\mathcal{A}} + J(\mathcal{A})) = 1_{\mathcal{A}} + J(\mathcal{S});$
- (c) $\mathcal{A}^{\times} = (1_{\mathcal{A}} + J(\mathcal{A}))\mathcal{S}^{\times} = \mathcal{S}^{\times}(1_{\mathcal{A}} + J(\mathcal{A}));$ and
- (d) any two maximal O-semi-simple O-subalgebras of A are conjugate by an element of $1_A + J(A)$.
- (e) Assume also that S is O-simple. Then $C_{\mathcal{A}}(S) = C_{\mathcal{A}}(S^{\times})$, $N_{\mathcal{A}^{\times}}(S^{\times}) = N_{\mathcal{A}^{\times}}(S) = S^{\times} N_{1_{\mathcal{A}} + J(\mathcal{A})}(S) = N_{1_{\mathcal{A}} + J(\mathcal{A})}(S)S^{\times}$ and $[S^{\times}, N_{1_{\mathcal{A}} + J(\mathcal{A})}(S^{\times})] \leq S^{\times} \cap (1_{\mathcal{A}} + J(\mathcal{A})) = 1_{\mathcal{A}} + J(S)$.

Proof. Clearly (a) holds and, since $1_{\mathcal{A}} - 1_{\mathcal{S}}$ is an idempotent in $J(\mathcal{A})$, (b) also follows. Clearly $(1_{\mathcal{A}} + J(\mathcal{A}))\mathcal{S}^{\times} \leq \mathcal{A}^{\times}$. Let $s \in \mathcal{S}$ and $j \in J(\mathcal{A})$ be such that $s+j \in \mathcal{A}^{\times}$. Then there is an element $t \in \mathcal{S}$ such that $st-1_{\mathcal{A}} \in J(\mathcal{A}) \cap \mathcal{S} = J(\mathcal{S})$ and $ts-1_{\mathcal{A}} \in J(\mathcal{A}) \cap \mathcal{S} = J(\mathcal{S})$. Thus $st \in 1_{\mathcal{A}} + J(\mathcal{S})$ and $ts \in 1_{\mathcal{A}} + J(\mathcal{S})$ so that s has an inverse s^{-1} in \mathcal{S} . Then $s+j=s(1_{\mathcal{A}}+s^{-1}j)\in \mathcal{S}^{\times}(1+J(\mathcal{A}))$, (c) holds and (d) follows from [18, Theorem 7.3(c)]. Finally Lemma 1.5, (b) and (c) and the fact that $1+J(\mathcal{A}) \leq \mathcal{A}^{\times}$ yield (e).

Note that we always assume that any finite group G acts trivially on \mathcal{O} .

Lemma 1.13. Let A be an O-free G-algebra such that $A = O1_A + J(A)$. Then:

- (a) $\mathcal{A}^{\times} = f(k^{\times})1_{\mathcal{A}} \times (1_{\mathcal{A}} + J(\mathcal{A}))$ as a G-group (since G acts trivially on $\mathcal{O}1_{\mathcal{A}}$ by hypothesis); and
- (b) if |G| = m is prime to p and A is also commutative, then $f: k^{\times} \to \mathcal{O}^{\times}$ of (1.2) induces a natural group isomorphism $f^*: k^{\times} \to f(k^{\times})1_{\mathcal{A}}$ such that $x \mapsto f(x)1_{\mathcal{A}}$ for all $x \in k^{\times}$ and f^* induces a group isomorphism $H^2(G, f^*): H^2(G, k^{\times}) \to H^2(G, \mathcal{A}^{\times})$.

Proof. Since $\mathcal{O}^{\times}1_{\mathcal{A}} = f(k^{\times})1_{\mathcal{A}} \times (1+J(\mathcal{O}))1_{\mathcal{A}}$ and $\mathcal{A}^{\times} = (\mathcal{O}^{\times}1_{\mathcal{A}})(1_{\mathcal{A}} + J(\mathcal{A}))$, we have $\mathcal{A}^{\times} = (f(k^{\times})1_{\mathcal{A}})(1_{\mathcal{A}} + J(\mathcal{A}))$. Let $x \in (f(k^{\times})1_{\mathcal{A}}) \cap (1_{\mathcal{A}} + J(\mathcal{A}))$. Then $x = \alpha 1_{\mathcal{A}} = 1_{\mathcal{A}} + j$, where $\alpha \in f(k^{\times})$ and $j \in J(\mathcal{A})$. Thus $(\alpha - 1)1_{\mathcal{A}} \in J(\mathcal{A}) \cap (\mathcal{O}1_{\mathcal{A}}) = J(\mathcal{O})1_{\mathcal{A}}$, $\alpha = 1$ and $x = 1_{\mathcal{A}}$ which proves (a). In the situation of (b), we have $H^2(G, \mathcal{A}^{\times}) = H^2(G, f(k^{\times})1_{\mathcal{A}}) \times H^2(G, 1_{\mathcal{A}} + J(\mathcal{A}))$ since the direct decomposition of (a) is a G-decomposition. As m = |G| is relatively prime to p and the p-th power map is an automorphism of $1_{\mathcal{A}} + J(\mathcal{A})$ by Proposition 1.8, we have

$$H^2(G, 1_A + J(A)) = 1$$

(by [9, I, Satz 16.19(a)]). Our proof is complete.

Let D be a finite p-group and set $\mathcal{A} = \mathcal{O}D$. Let $\mathcal{I}(\mathcal{O}D) = \sum_{d \in D^{\#}} \mathcal{O}(d-1)$ be the augmentation ideal of \mathcal{A} , so that $\mathcal{I}(\mathcal{O}D) \leq J(\mathcal{A})$, $\mathcal{A} = \mathcal{O}1_{\mathcal{A}} \oplus \mathcal{I}(\mathcal{O}D)$ in \mathcal{O} -mod and $\mathcal{O}/\mathcal{I}(\mathcal{O}D) = \mathcal{O}$ as \mathcal{O} -algebras.

Lemma 1.14. (a)

$$\mathcal{A}^{\times} = (\mathcal{O}^{\times} 1_{\mathcal{A}}) \times (1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D))$$

and

$$1_{\mathcal{A}} + J(\mathcal{O}D) = (1_{\mathcal{A}} + J(\mathcal{O})1_{\mathcal{A}}) \times (1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D))$$

as groups and $(\mathcal{O}^{\times}1_{\mathcal{A}}) \cap (1_{\mathcal{A}} + J(\mathcal{O}D)) = 1_{\mathcal{A}} + J(\mathcal{O})1_{\mathcal{A}}$; and

(b) let m be a positive integer with (m, p) = 1 and let $\mu : 1_{\mathcal{A}} + J(\mathcal{A}) \to 1_{\mathcal{A}} + J(\mathcal{A})$ be the m-th power bijective map of Proposition 1.8. Then the restriction of μ to $1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D) \to 1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D)$ is a bijection.

Proof. Let $x \in \mathcal{A}^{\times}$. Then $x = a1_{\mathcal{A}} + i$, where $i \in \mathcal{I}(\mathcal{O}D)$ and $a \in \mathcal{O}$. Since $\mathcal{A}/\mathcal{I}(\mathcal{O}D) = \mathcal{O}$, $a \in \mathcal{O}^{\times}$ and $x = (a1_{\mathcal{A}})(1_{\mathcal{A}} + a^{-1}i) \in (\mathcal{O}^{\times}1_{\mathcal{A}})(1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D))$. Let $b \in \mathcal{O}^{\times}$ be such that $b1_{\mathcal{A}} = 1_{\mathcal{A}} + i$, where $i \in \mathcal{I}(\mathcal{O}D)$. Then $(b-1)1_{\mathcal{A}} = i = 0$, b = 1 and $\mathcal{A}^{\times} = (\mathcal{O}^{\times}1_{\mathcal{A}}) \times (1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D))$ as groups. Since $1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D) \leq 1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D)$, $1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D) = ((1 + \mathcal{I}(\mathcal{O}D)) \cap (\mathcal{O}^{\times}1_{\mathcal{A}})) \times (1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D))$. Let $a \in \mathcal{O}^{\times}$ be such that $a1_{\mathcal{A}} = 1_{\mathcal{A}} + j$, where $j \in \mathcal{I}(\mathcal{O}D)$. Then $(a-1)1_{\mathcal{A}} = j \in \mathcal{I}(\mathcal{O}D) \cap (\mathcal{O}1_{\mathcal{A}}) = \mathcal{I}(\mathcal{O})1_{\mathcal{A}}$ and (a) holds.

For (b), it suffices to prove that $\mu: 1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D) \to 1_{\mathcal{A}} + \mathcal{I}(\mathcal{O}D)$ is surjective. Let $i \in \mathcal{I}(\mathcal{O}D)$. Then $1_{\mathcal{A}} + i = (1_{\mathcal{A}} + j)^m$ for some $j \in J(\mathcal{O}D)$ by Proposition 1.8. Also $1_{\mathcal{A}} + j = a1_{\mathcal{A}} + s$ for some $a \in \mathcal{O}$ and some $s \in \mathcal{I}(\mathcal{O}D)$. As $\mathcal{A}/\mathcal{I}(\mathcal{O}D) = \mathcal{O}$ as rings, $a^m = 1$. Thus $1_{\mathcal{A}} + j = a1_{\mathcal{A}}(1_{\mathcal{A}} + a^{-1}s)$, where $1_{\mathcal{A}} + a^{-1}s \in 1_{\mathcal{A}} + J(\mathcal{A})$. Now Lemma 1.13(a) implies that $a = 1, \ j = s$ and we are done.

Next assume that \mathcal{A} is a G-graded crossed-product \mathcal{O} -algebra that is \mathcal{O} -free. Note that $1_{\mathcal{A}} \in \mathcal{A}_1$.

Proposition 1.15. Assume that $A_1/J(A_1) \cong M_r(k)$ for some positive integer r. Let S be a maximal O-semisimple subalgebra of A_1 so that $1_A \in S$ and let $u_q \in A_q \cap A^{\times}$ for each $g \in G$. Then:

- (a) $S \cong M_r(\mathcal{O})$ as \mathcal{O} -algebras, $\mathcal{A}_1 = S + J(\mathcal{A}_1)$, $S \cap J(\mathcal{A}_1) = J(\mathcal{O})S = J(S)$ and $\mathcal{A}_1^{\times} = S^{\times}(1_{\mathcal{A}} + J(\mathcal{A}_1)) = (1_{\mathcal{A}} + J(\mathcal{A}_1))S^{\times}$;
- (b) for each $g \in G$, there is an element $w_g \in \mathcal{A}_1^{\times}$ such that $v_g = w_g u_g \in C_{\mathcal{A}_g}(\mathcal{S}) \cap \mathcal{A}^{\times}$;
- (c) $C_{\mathcal{A}}(\mathcal{S}) = \bigoplus_{g \in G} (C_{\mathcal{A}_1}(\mathcal{S})v_g)$ is a G-graded crossed-product \mathcal{O} -subalgebra of $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$, where $(C_{\mathcal{A}}(\mathcal{S}))_g = C_{\mathcal{A}_1}(\mathcal{S})v_g$ for all $g \in G$;
- (d) multiplication $\mu: \mathcal{S} \otimes_{\mathcal{O}} C_{\mathcal{A}}(\mathcal{S}) \to \mathcal{A}$ such that $\sigma \otimes_{\mathcal{O}} \rho \mapsto \sigma \rho = \rho \sigma$ for all $\sigma \in \mathcal{S}$ and all $\rho \in C_{\mathcal{A}}(\mathcal{S})$ is a G-graded \mathcal{O} -algebra isomorphism (where $(\mathcal{S} \otimes_{\mathcal{O}} C_{\mathcal{A}}(\mathcal{S}))_g = \mathcal{S} \otimes_{\mathcal{O}} (C_{\mathcal{A}}(\mathcal{S})_g)$ for all $g \in G$); and
- (e) $\mathcal{A}J(\mathcal{A}_1)$ is a G-graded ideal of \mathcal{A} and, setting $\tilde{\mathcal{A}}=\mathcal{A}/(\mathcal{A}J(\mathcal{A}_1))$, $\tilde{\mathcal{A}}$ becomes a G-graded crossed-product k-algebra with $\tilde{\mathcal{A}}_g=\mathcal{A}_g+\mathcal{A}J(\mathcal{A}_1)$ for all $g\in G$ and $\tilde{\mathcal{A}}_1=\tilde{\mathcal{S}}\cong M_r(k)$ as k-algebras. Moreover, $C_{\tilde{\mathcal{A}}_1}(\tilde{\mathcal{A}}_1)=Z(\tilde{\mathcal{A}}_1)=\widetilde{\mathcal{O}}1_{\mathcal{A}}\cong k$, $C_{\tilde{\mathcal{A}}}(\tilde{\mathcal{A}}_1)=\bigoplus_{g\in G}C_{\tilde{\mathcal{A}}_1}(\tilde{\mathcal{A}}_1)\tilde{v}_g$ is a G-graded twisted group k-subalgebra of $\tilde{\mathcal{A}}=\bigoplus_{g\in G}\tilde{\mathcal{A}}_g$ and multiplication $\tilde{\mu}:\tilde{\mathcal{A}}_1\otimes_k C_{\tilde{\mathcal{A}}}(\tilde{\mathcal{A}}_1)\to \tilde{\mathcal{A}}$ such that $\tilde{\sigma}\otimes_k \tilde{\rho}\mapsto \tilde{\sigma}\tilde{\rho}=\tilde{\rho}\tilde{\sigma}$ for all $\tilde{\sigma}\in \tilde{\mathcal{A}}_1$ and all $\tilde{\rho}\in C_{\tilde{\mathcal{A}}}(\tilde{\mathcal{A}}_1)$ is a G-graded k-algebra isomorphism (where $(\tilde{\mathcal{A}}_1\otimes_k C_{\tilde{\mathcal{A}}}(\tilde{\mathcal{A}}_1))_g=\tilde{\mathcal{A}}_1\otimes_k (C_{\tilde{\mathcal{A}}}(\tilde{\mathcal{A}}_1)_g)$ for all $g\in G$).

Remark 1.16. In Proposition 1.15(e), $C_{\tilde{\mathcal{A}}}(\tilde{\mathcal{A}}_1) = \bigoplus_{g \in G} C_{\tilde{\mathcal{A}}_1}(\tilde{\mathcal{A}}_1)\tilde{v}_g$ is the "Clifford extension" of [3, (1.10) and (4.2)].

Proof. By [18, Theorem 7.3] and Proposition 1.12, we have (a). Fix $g \in G$. Since $u_g \mathcal{S}$ is also a maximal \mathcal{O} -semisimple subalgebra of \mathcal{A}_1 , there is an element $j \in J(\mathcal{A}_1)$ such that $^{(1+j)u_g}\mathcal{S} = \mathcal{S}$. As $\mathrm{Aut}_{\mathcal{O}}(\mathcal{S}) = \mathrm{Inn}_{\mathcal{O}}(\mathcal{S})$ (cf. [18, Theorem 7.2]), there is an element $s_g \in \mathcal{S}^{\times}$ such that $s_g(1+j)u_g \in C_{\mathcal{A}_g}(\mathcal{S}) \cap \mathcal{A}^{\times}$ and we may take $w_g = s_g(1+j) \in \mathcal{A}_1^{\times}$ to conclude (b). Then (c) is immediate and (d) follows from [18, Proposition 7.5]. For similar reasons (e) also holds.

In the remainder of this section, G will, as usual, denote a finite group and we shall also assume that $(\mathcal{K}, \mathcal{O}, k)$ is "big enough" for all subgroups of G. Let b be a block idempotent of $\mathcal{O}G$ and let $-: \mathcal{O}G \to kG$ be the \mathcal{O} -algebra epimorphism

induced by the natural epimorphism $-: \mathcal{O} \to k = \mathcal{O}/J(\mathcal{O})$. Thus \bar{b} is a block idempotent of kG.

We shall need the following well-known "facts":

Lemma 1.17. (a) If D is a defect group of b, then D is a defect group of \bar{b} ; and (b) if P is a p-subgroup of G, then the $\mathcal{O}P$ -module homorphism $m(b): \mathcal{O}P \to (\mathcal{O}G)b$ such that $p \mapsto pb$ for all $p \in P$ is an injection and the kP-module homorphism $\overline{m(b)}: kP \to (kG)\bar{b}$ induced by m(b) is an injection.

Proof. Here (a) is a consequence of [5, III, Theorem 6.10]. Since $(\mathcal{O}G)b$ is projective and hence free in $\mathcal{O}P$ -mod, the first part of (b) holds and similar arguments yield the remainder of (b).

Next assume that b is a block of defect 0 of the finite group G and let V be an indecomposable module in $(\mathcal{O}G)b$ -mod. Then V is projective in $\mathcal{O}Gb$ -mod, \bar{V} is irreducible in kGb-mod and $K\otimes_{\mathcal{O}}V$ is irreducible in KGb-mod. Let χ denote the character of $K\otimes_{\mathcal{O}}V$ and let φ denote the Brauer character of \bar{V} . Let $H\leq G$ and let β be a block of defect 0 of H and let W be an indecomposable module in $(\mathcal{O}H)\beta$ -mod so that we have similar conditions as above. Also let δ denote the character of $K\otimes_{\mathcal{O}}W$ and let ψ denote the Brauer character of \bar{W} . Finally let ω denote the multiplicity of \bar{W} as a composition factor of $\mathrm{Res}_H^G(\bar{V})$.

Lemma 1.18. $\omega = (\operatorname{Res}_H^G(\chi), \delta)_H$.

Proof. Clearly $\omega = \frac{1}{|H|} \sum_{h \in H_{p'}} \varphi(h) \psi(h^{-1})$. Since χ and δ vanish on p-singular elements and χ and φ and δ and ψ agree on p-regular elements, we are done.

In the remainder of this section let the solvable finite group \mathcal{A} act on G on the right and be such that (|G|, |A|) = 1 so that we are in the Glauberman correspondence situation (cf. [10, Chapter 13]). Set $C = C_G(A)$.

Let $N \subseteq G$ be A-invariant. Then $C_N(A) = C \cap N \subseteq C$ and $\pi(N, A) : \operatorname{Irr}(N)^A \to \operatorname{Irr}(C \cap N)$ is a bijection.

Lemma 1.19. Let $\chi \in Irr(N)^A$ and let $c \in C$. Then:

- (a) $\chi^c \in \operatorname{Irr}(N)^A$;
- (b) $(\pi(N, A)(\chi))^c = \pi(N, A)(\chi^c)$; and
- (c) $\operatorname{Stab}_{C}(\chi) = \operatorname{Stab}_{C}(\pi(N, A)(\chi)).$

Proof. Clearly (a) holds and, for (b), [10, Theorem 13.1] implies that we may assume that A is a q-group for some prime $q \neq p$. Then $\pi(N,A)(\chi)$ is the unique irreducible constituent of $\mathrm{Res}_{C\cap N}^N(\chi)$ with multiplicity prime to q by [10, Theorem 13.4]. Thus $\pi(N,A)(\chi)^c$ is the unique irreducible constituent of $\mathrm{Res}_{C\cap N}^N(\chi^c)$ with multiplicity prime to q. Thus (b) follows and (c) is immediate.

Let D be a p-subgroup of $C \cap N$ and let $\beta \in B\ell(N)^A$ have D as a defect group. Then $W(\beta)$ is a block of $C \cap N$ with defect group D and $Irr(W(\beta)) = \{\pi(N, A)(\chi) \mid \chi \in Irr(\beta)\}$ (where $Irr(\beta) \subseteq Irr(N)^A$).

Our next result is an immediate consequence of Lemma 1.19.

Corollary 1.20. Let $c \in C$ (with β and D as above). Then:

- (a) $\beta^c \in B\ell(N)^A$ and has D^c as a defect group;
- (b) $W(\beta^c) = W(\beta)^c$; and
- (c) $\operatorname{Stab}_C(\beta) = \operatorname{Stab}_C(W(\beta))$.

We continue with the hypotheses above.

Lemma 1.21. (a) Let $\beta \in B\ell(N)^A$ have D as a defect group. Then there is an A-invariant block b of G that covers β and such that $D = N \cap \Delta$ for some defect group Δ of b;

- (b) assume that $D \leq N$ and let b be an A-invariant block of G with a defect group D. Then $D = O_p(G) = O_p(N)$ and there is an A-invariant block β of N covered by b such that D is a defect group of β ; and
- (c) let $b \in B\ell(G)^A$ have D as a defect group and cover $\beta \in B\ell(N)^A$ such that D is a defect group of β . Then $W(b) \in B\ell(C)$ (with defect group D) covers $W(\beta)$ of $C \cap N$ (with defect group D).

Proof. Assume the conditions of (a) and let $\psi \in Irr(\beta)$, so that ψ is A-stable by [19, Proposition 1]. Then [10, Theorem 13.28] yields an A-stable irreducible constituent χ of $\operatorname{Ind}_N^G(\psi)$ which must belong to an A-stable block b of G that covers β . Thus [12, Proposition 4.2], completes the proof.

Assume the conditions of (b). Thus $D \leq O_p(G)$ and hence $D = O_p(G)$ since D is a defect group of b. Let $\chi \in Irr(b)$ so that χ is A-stable. Here [10, Theorem 13.27] yields an A-stable irreducible constituent ψ of $\mathrm{Res}_N^G(\chi)$. Then ψ lies in an A-stable block β of N. Let Δ be a defect group of β , so that $D = O_p(N) \leq \Delta$. As above $\Delta \leq \Delta'$ for some defect group Δ' of b. Since $|D| = |\Delta'|$, we conclude that $D = \Delta = \Delta'$ is a defect group of β .

Assume the conditions of (c), let $\chi \in Irr(b)$ and let $\psi \in Irr(\beta)$ be such that $[\operatorname{Res}_N^G(\chi), \psi]_N \neq 0$. Thus $[\chi, \operatorname{Ind}_N^G(\psi)]_G \neq 0$ and [10, Theorem 13.29] implies that $0 \neq [\operatorname{Ind}_{C \cap N}^{C}(\pi(N, A)(\psi)), \ \pi(G, A)(\chi)]_{C} = [\pi(N, A)(\psi), \operatorname{Res}_{C \cap N}^{C}(\pi(G, A)(\chi))]_{C \cap N}.$ Thus W(b) covers $W(\beta)$ and we are done.

For the final results of this section, we assume that $D \subseteq G$, where D is a pgroup. (These results may hold for arbitrary sets of primes.) Clearly if $g \in G$, then D normalizes gD = Dg, $G_{p'}$ and $(gD) \cap G_{p'}$.

Lemma 1.22. Let $g \in G$. Then the following five conditions are equivalent:

- (a) $gD \in (G/D)_{p'}$,
- (b) $g_p \in D$,
- (c) $x_p \in D$ for all $x \in gD$,
- (d) $(gD) \cap G_{p'} \neq \emptyset$; and
- (e) $xD = x_{p'}D$ for all $x \in gD$.

In which case, if $z \in (gD) \cap G_{p'}$, then: (f) $(gD) \cap G_{p'} = z^D$;

- (g) if \mathcal{T} is a right transversal of $C_D(z)$ in D, then $gD = \bigcup_{t \in \mathcal{T}} (zC_D(z))^t$, where the union is disjoint;
- (h) if \mathcal{T} is a right transversal of $G_D(g_{p'})$ in D, then $gD = \bigcup_{t \in \mathcal{T}} (gC_D(g_{p'}))^t$, where the union is disjoint; and
 - (i) if $\psi: gD \to \mathcal{K}$ is D-stable, then

$$\sum_{x \in gD} \psi(x) = |D: C_D(g_{p'})| \left(\sum_{d \in C_D(g_{p'})} \psi(gd)\right).$$

Proof. The equivalence of (a)–(e) is well known and easy. Let $z \in (gD) \cap G_{p'}$. Then $z^D \subseteq (gD) \cap G_{p'}$ since D normalizes $(gD) \cap G_{p'}$. Let $u \in (gD) \cap G_{p'} = (zD) \cap G_{p'}$. Then $\langle u \rangle \leq D\langle z \rangle$, $\langle u \rangle$ is a p'-subgroup and $\langle z \rangle$ is a p'-subgroup complement to D in $D\langle z\rangle$. Thus [7, Theorem 6.3.6] yields an element $d\in D$ such that $\langle u\rangle^d\leq \langle z\rangle$.

Hence $u^d \in (zD) \cap \langle z \rangle = \{z\}$ and (f) holds. Let $u \in gD = zD$. Then $u = u_{p'}u_p$, where $u_p \in D$ and $u_{p'} \in (gD) \cap G_{p'} = z^D$. Hence $u_{p'}^d = z$ for some $d \in D$ and $u^d = zu_p^d \in zC_D(z)$. Thus $gD = \bigcup_{d \in D} (zC_D(z))^d = \bigcup_{t \in \mathcal{T}} (zC_D(z))^t$ since $C_D(z)$ normalizes $zC_D(z)$. Since $|\bigcup_{t \in \mathcal{T}} (zC_D(z))^t| \leq |D: C_D(z)||zC_D(z)| = |D|$, (g) holds. Note that $g = g_{p'}g_p$, where $g_{p'} \in (gD) \cap G_{p'}$ and $g_p \in C_D(g_{p'})$. Then $gD = \bigcup_{t \in \mathcal{T}} (g_{p'}C_D(g_{p'}))^t = \bigcup_{t \in \mathcal{T}} (gC_D(g_{p'}))^t$ and we are done.

Let $G_{p'} = \bigcup_{i \in I} \mathcal{O}_i$ be the *D*-conjugation orbit decomposition of $G_{p'}$.

Corollary 1.23. $\varphi: (G/D)_{p'} \to \{\mathcal{O}_i | i \in I\} \text{ such that } xD \in (G/D)_{p'} \mapsto (xD) \cap G_{p'} \text{ is a bijection.}$

2. Proofs of Theorems 1 and 2

We begin with a proof of Theorem 1. Under the hypotheses of Theorem 1, let $H = N_G(D)$ and $K = DC_G(D) \leq H$. Then Lemma 1.21(b) yields a block $\beta \in B\ell(K)^A$ with defect group D that is covered by $Br_D(b)$. Here β is also a block of $C_G(D)$ and (D,β) is a maximal b-subpair. By [19, Proposition 4(i)], $(D,W(\beta))$ is a maximal W(b)-subpair. Here $W(\beta)$ is a block of $DC_C(D) = C_K(A)$ and $W(Br_D(b))$ covers $W(\beta) \in B\ell(C_K(A))$ by Lemma 1.21(c). Since $(D,W(\beta))$ is a maximal W(b)-subpair, it follows that $Br_D(W(b))$ is the unique block of $N_C(D)$ that covers $W(\beta) \in B\ell(C_K(A))$. Thus $W(Br_D(b)) = Br_D(W(b))$ and we are done.

Next we proceed to demonstrate Theorem 2. So we assume that $D ext{ } ext{$

Here $W(b) \in B\ell(C)$ covers $W(\beta)$ and both have defect group D, $W(b_T) \in B\ell(T\cap C)$, $W(b_T)$ covers $W(\beta)$ and also has defect group D by [10, Theorem 13.29]. Moreover, $Irr(W(b)) = \{W(Ind_T^G(\psi)) \mid \psi \in Irr(b_T)\} = \{Ind_{T\cap C}^C(\pi(T,A)(\psi)) \mid \psi \in Irr(b_T)\}$ by [8, Theorem 2.3(ii)]. Thus $(\mathcal{O}C)W(b) \cong Ind_{C\cap T}^C((\mathcal{O}(C\cap T))W(b_T))$ as interior C-algebras, $W(b) = Tr_{C\cap T}^C(W(b_T))$, and the Brauer categories of $(\mathcal{O}C)W(b)$ and $(\mathcal{O}(C\cap T))W(b_T)$ are equivalent, and $W(b_T)$ induces W(b) via Brauer block induction, and $\mathcal{O}(C\cap T)W(b_T)$ and $(\mathcal{O}C)W(b)$ are Morita equivalent \mathcal{O} -algebras via a categorical equivalence that on the character level yields the bijection $Ind_{C\cap T}^C: Irr(W(b_T)) \to Irr(W(b))$.

Consequently it suffices to assume that β is G-stable. In that case, $\beta = b$ and b is a block idempotent of $\mathcal{O}G$, $\mathcal{O}K$ and $\mathcal{O}L$, where Z(D) is a defect group of b as a block of $\mathcal{O}L$. Also |G/K| = m is relatively prime to p. Similarly $W(\beta) = W(b)$

is a block idempotent of $\mathcal{O}C$, $\mathcal{O}K_1$ and $\mathcal{O}L_1$ where Z(D) is a defect group of W(b) as a block of $\mathcal{O}L_1$ (cf. [5, V, Sections 3 and 4]).

Since $[G,A] \leq C_G(D)$, we have $G = C_G(D)C$. Since $DC_C(D)/C_C(D)$ is a normal Sylow p-subgroup of $C/C_C(D)$, there is a subgroup H_1 of C with $C_C(D) \leq H_1$, $C = H_1D$ and $H_1 \cap D = Z(D)$. Thus the map $hC_C(D) \mapsto hK$ for $h \in H_1$ is an isomorphism of H_1/L_1 onto G/K. Let \mathcal{T} be a transversal of L_1 in H_1 with $1 \in \mathcal{T}$, so that \mathcal{T} is a transversal of K in G and $|\mathcal{T}| = |H_1/L_1| = |G/K| = |C/K_1| = m$.

Set $H = C_G(D)H_1$, so that $L \leq H \leq G = HD$ and $H \cap D = Z(D)$, H is A-invariant, $C_H(A) = C \cap H = H_1$ and $H_1 \cap C_G(D) = C_C(D)$. As $L_1 = C_{H_1}(D)$, H_1/L_1 acts faithfully by conjugation on D. Let $\mathcal{N} = D \rtimes (H_1/L_1)$.

As is well known, the block b of $\mathcal{O}K$ contains exactly one irreducible character θ such that $D \leq \operatorname{Ker}(\theta)$ and b contains exactly one irreducible Brauer character φ and $\varphi(x) = \theta(x)$ for all p'-elements x of K. Let V be an \mathcal{O} -free $\mathcal{O}K$ -module that affords θ and let $r = \theta(1) = \operatorname{rank}(V/\mathcal{O})$. Then $D \leq \operatorname{Ker}(V)$ and \bar{V} is an irreducible kK-module in b with Brauer character φ . Let $P(\bar{V})$ denote a projective indecomposable $(\mathcal{O}K)b$ -module corresponding to \bar{V} and let Φ be the character of $P(\bar{V})$. Then $\Phi(x) = |D|\varphi(x) = |D|\theta(x)$ for all p'-elements x of K by [5, V, Corollary 4.6] and hence $\operatorname{rank}(P(\bar{V})/\mathcal{O}) = r|D|$. Since $(\mathcal{O}K)b \cong P(\bar{V})^r$ in $(\mathcal{O}K)b$ -mod, we conclude that $\operatorname{rank}((\mathcal{O}K)b/\mathcal{O}) = r^2|D|$. Note that $\operatorname{Res}_L^K(\theta)$ is the unique irreducible character in the block b of L with $Z(D) \leq \operatorname{Ker}(\operatorname{Res}_L^K(\theta))$; we similarly conclude that $\operatorname{rank}((\mathcal{O}L)b/\mathcal{O}) = r^2|Z(D)|$. Also $\bar{\theta} = \operatorname{char}(\bar{V})$ is the unique irreducible character of $(kK)\bar{b}$, and $\operatorname{Res}_L^K(\bar{\theta}) = \operatorname{char}(\operatorname{Res}_L^K(\bar{V}))$ is the unique irreducible character of $(kL)\bar{b}$ and $r_p = |K/D|_p = |G/D|_p$.

Clearly $(\mathcal{O}L)b$, $(\mathcal{O}K)b$ and $(\mathcal{O}H)b$ are \mathcal{O} -subalgebras of $(\mathcal{O}G)b$.

Let $\theta_1, \varphi_1, V_1, r_1 = \theta_1(1)$, $\bar{V}_1, P(\bar{V}_1)$, Φ_1 be the corresponding objects of the block W(b) of K_1 with defect group D. Note that $\pi(K, A)(\theta) = \theta_1$ since $D \leq \ker(\pi(K, A)(\theta))$ and $\pi(K, A)(\theta) \in \operatorname{Irr}_k(W(b))$.

Proposition 2.1. (a) the \mathcal{O} -algebra homomorphism $M(b): \mathcal{O}D \to (\mathcal{O}K)b$ such that $\alpha \mapsto \alpha b$ for all $\alpha \in \mathcal{O}D$ is a G-injection such that $M(b)(\mathcal{O}Z(D)) = (\mathcal{O}Z(D))b \leq (\mathcal{O}L)b$;

- (b) there is an \mathcal{O} -simple subalgebra \mathcal{S} of $(\mathcal{O}L)b$ such that $b \in \mathcal{S}$, $\mathcal{S} \cong M_r(\mathcal{O})$ as \mathcal{O} -algebras, $(\mathcal{O}L)b = \mathcal{S} + J((\mathcal{O}L)b)$, $(\mathcal{O}K)b = \mathcal{S} + J((\mathcal{O}K)b)$, \mathcal{S} is a maximal \mathcal{O} -semi-simple \mathcal{O} -subalgebra of both $(\mathcal{O}L)b$ and $(\mathcal{O}K)b$, and $J(\mathcal{O})\mathcal{S} = \mathcal{S} \cap J((\mathcal{O}K)b) = \mathcal{S} \cap J((\mathcal{O}L)b)$;
- (c) $C_{(\mathcal{O}K)b}(S) = (\mathcal{O}D)b$ and $C_{(\mathcal{O}L)b}(S) = (\mathcal{O}Z(D))b$ and the \mathcal{O} -linear "multiplication maps" $\mu : S \otimes_{\mathcal{O}} ((\mathcal{O}D)b) \to (\mathcal{O}K)b$ such that $s \otimes_{\mathcal{O}} \alpha \mapsto s\alpha$ for all $s \in S$ and all $\alpha \in (\mathcal{O}D)b$, and $\mu : S \otimes (\mathcal{O}Z(D))b \to (\mathcal{O}L)b$ such that $s \otimes_{\mathcal{O}} \alpha \mapsto s\alpha$ for all $s \in S$ and all $\alpha \in (\mathcal{O}Z(D))b$ are \mathcal{O} -algebra isomorphisms;
- (d) $(\mathcal{O}G)b = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}K)b)(tb)$ and $(\mathcal{O}H)b = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}L)b)(tb)$ exhibit $(\mathcal{O}G)b$ and $(\mathcal{O}H)b$ as H_1/L_1 -crossed product \mathcal{O} -algebras with $((\mathcal{O}G)b)_{tL_1} = ((\mathcal{O}K)b)(tb)$ and $((\mathcal{O}H)b)_{tL_1} = ((\mathcal{O}L)b)(tb)$ for all $t \in \mathcal{T}$, respectively;
 - (e) for each $t \in \mathcal{T}$, there is an element $w_t \in ((\mathcal{O}L)b)^{\times}$ such that

$$v_t = w_t(tb) \in C_{((\mathcal{O}L)b)(tb)}(\mathcal{S}) \cap ((\mathcal{O}H)b)^{\times}, v_1 = w_1 = b,$$

$$C_{(\mathcal{O}H)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}Z(D))b)v_t),$$

$$C_{(\mathcal{O}G)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}D)b)v_t)$$

and $v_t \alpha v_t^{-1} = t \alpha t^{-1} = {}^t \alpha$ for all $\alpha \in (\mathcal{O}D)b$, $v_t \alpha v_t^{-1} = w_t({}^t \alpha) w_t^{-1}$ for all $\alpha \in (\mathcal{O}K)b$ and $v_t \in N_{((\mathcal{O}G)b)^{\times}}((\mathcal{O}K)b) \cap N_{((\mathcal{O}G)b)^{\times}}((\mathcal{O}L)b)$ for all $t \in \mathcal{T}$. Also $\mathcal{A} = (\mathcal{O}K)b$

 $\bigoplus_{t\in\mathcal{T}} \mathcal{O}v_t$ is a twisted H_1/L_1 -group \mathcal{O} -subalgebra of $(\mathcal{O}H)b$ with associated $c\in Z^2(H_1/L_1, f(k^{\times}))$ such that $c^m=1$ and $c(tL_1, L_1)=c(L_1, tL_1)=1$ for all $t\in\mathcal{T}$, $\Omega=\{c(t_1L_1, t_2L_1)\mid t_1, t_2\in\mathcal{T}\}$ is a finite subgroup of \mathcal{O}^{\times} of order n dividing m and $\{\omega v_t\mid \omega\in\Omega, t\in\mathcal{T}\}$ is a subgroup of \mathcal{A}^{\times} of order mn;

- (f) multiplication $\mu: \mathcal{S} \otimes_{\mathcal{O}} C_{(\mathcal{O}G)b}(\mathcal{S}) \to (\mathcal{O}G)b$ such that $s \otimes \alpha \mapsto s\alpha$ for all $s \in \mathcal{S}$ and all $\alpha \in C_{(\mathcal{O}G)b}(\mathcal{S})$ is an \mathcal{O} -algebra isomorphism;
- (g) $(\mathcal{O}H)bJ((\mathcal{O}L)b)$ is an H_1/L_1 -graded ideal of $(\mathcal{O}H)b$ and hence $(\mathcal{O}\overline{H})b = (\mathcal{O}H)b/((\mathcal{O}H)bJ((\mathcal{O}L)b))$ is an H_1/L_1 -crossed product k-algebra with $((\mathcal{O}\overline{H})b)_{tL_1} = [((\mathcal{O}L)b)(tb) + (\mathcal{O}H)bJ((\mathcal{O}L)b)]/[(\mathcal{O}H)bJ((\mathcal{O}L)b)]$ for all $t \in \mathcal{T}$ and $((\mathcal{O}H)b)_{L_1} \cong \mathcal{S}/J(\mathcal{O})\mathcal{S} \cong M_r(k)$ as k-algebras. Moreover, the injection $i : \mathcal{A} = \bigoplus_{t \in \mathcal{T}} \mathcal{O}v_t \to (\mathcal{O}H)b$ induces an H_1/L_1 -graded isomorphism of $\bar{\mathcal{A}} = \mathcal{A}/J(\mathcal{O})\mathcal{A}$ onto the associated "Clifford extension" of $(\mathcal{O}H)b$ with respect to $(\mathcal{O}H)bJ((\mathcal{O}L)b)$; and
- (h) let \mathcal{L} denote the \mathcal{O} -free twisted \mathcal{N} -group algebra with \mathcal{O} -free basis $\{(d, tL_1) \mid d \in D, t \in \mathcal{T}\}$ such that $(d_1, t_1L_1)(d_2, t_2L_1) = c(t_1L_1, t_2L_1)(d_1(^{t_1}d_2), t_3L_1)$, where $d_1, d_2 \in D$ and $t_1, t_2 \in \mathcal{T}$ and $(t_1L_1)(t_2L_1) = t_3L_1$ for a unique $t_3 \in \mathcal{T}$. Then \mathcal{L} is \mathcal{O} -algebra isomorphic to $C_{(\mathcal{O}G)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}D)b)v_t)$ via the \mathcal{O} -linear map such that $(d, tL_1) \mapsto (db)v_t$ for all $d \in D$ and all $t \in \mathcal{T}$.

Remark 2.2. The "Clifford extension" of Proposition 2.1(g) is the "Clifford extension" of kH with respect to the irreducible character $\operatorname{Res}_L^K(\bar{\theta}) = \operatorname{char}(\operatorname{Res}_L^K(\bar{V}))$ of kL.

Proof. Clearly Lemma 1.17 yields (a). Since φ is the unique irreducible Brauer character of $b \in B\ell(\mathcal{O}K)$ and $\mathrm{Res}_L^K(\varphi)$ is the unique irreducible Brauer character of $b \in B\ell(\mathcal{O}L)$, Propositions 1.12 and 1.15 and [18, Theorem 7.3] yield (b). Here the \mathcal{O} -linear "multiplication" map $\mu: \mathcal{S} \otimes C_{(\mathcal{O}K)b}(\mathcal{S}) \to (\mathcal{O}K)b$ is an \mathcal{O} -algebra isomorphism by [18, Proposition 7.5]. Thus $\mathrm{rank}(C_{(\mathcal{O}K)b}(\mathcal{S})/\mathcal{O}) = |D| = \mathrm{rank}((\mathcal{O}D)b/\mathcal{O})$ and $(\mathcal{O}D)b \leq C_{(\mathcal{O}K)b}(\mathcal{S})$. Also "reducing mod p", we similarly have $\dim((kD)\bar{b}/k) = |D| = \dim(C_{kK\bar{b}}(\bar{\mathcal{S}})/k)$. Thus $C_{kK\bar{b}}(\bar{\mathcal{S}}) = (kD)\bar{b}$ and $(\mathcal{O}D)b \leq C_{(\mathcal{O}K)b}(\mathcal{S}) \leq (\mathcal{O}D)b + J(\mathcal{O})(\mathcal{O}K)b$. Let $0 \neq x \in J(\mathcal{O})(\mathcal{O}K)b \cap C_{(\mathcal{O}K)b}(\mathcal{S})$. Then there are elements $0 \neq j \in J(\mathcal{O})$ and $0 \neq u \in (\mathcal{O}K)b$ such that x = ju and we readily conclude that $u \in C_{(\mathcal{O}K)b}(\mathcal{S})$. Thus $(\mathcal{O}D)b \leq C_{(\mathcal{O}K)b}(\mathcal{S}) \leq (\mathcal{O}D)b + J(\mathcal{O})C_{(\mathcal{O}K)b}(\mathcal{S})$ and Nakayama's Lemma implies that $C_{(\mathcal{O}K)b}(\mathcal{S}) = (\mathcal{O}D)b$. Similarly $C_{(\mathcal{O}L)b}(\mathcal{S}) = (\mathcal{O}Z(D))b$ and (c) holds. Clearly (d) holds.

For (e), recall that $1 \in \mathcal{T}$ and that $((\mathcal{O}L)b)^{\times} = \mathcal{S}^{\times}(b + J((\mathcal{O}L)b)) = (b + J(\mathcal{O}L)b))\mathcal{S}^{\times}$ by Proposition 1.12.

For each $t \in \mathcal{T}$, there is an element $w'_t \in ((\mathcal{O}L)b)^{\times}$ such that

$$w'_t(tb) \in C_{(\mathcal{O}L)b(tb)}(\mathcal{S}) \cap ((\mathcal{O}H)b)^{\times},$$

where we may assume that $w_1' = b$ if t = 1 by Proposition 1.15(b). Consequently $(\mathcal{O}H)b = \bigoplus_{t \in \mathcal{T}} (\mathcal{O}L)b((w_t'(tb)))$ and $C_{(\mathcal{O}H)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} \mathcal{O}Z(D)b(w_t'(tb))$, where $\mathcal{O}Z(D)b$ is a commutative \mathcal{O} -algebra. Lemma 1.13 implies that there is a set $\{u_t|t\in\mathcal{T}\}\subseteq (\mathcal{O}Z(D)b)^{\times}$ such that $\bigoplus_{t\in\mathcal{T}} \mathcal{O}(u_tw_t'(tb))$ is a twisted H_1/L_1 -group \mathcal{O} -algebra with associated $c\in Z^2(H_1/L_1,f(k^{\times}))$. Then, since k^{\times} is $m=|H_1/L_1|$ -divisible, Lemma 1.4 implies that we may replace each u_t by an element of $\mathcal{O}^{\times}u_t$ to assure that $c^m=1$. Then, referring to Lemma 1.2, we may also assume that $c(tL_1,L_1)=c(L_1,tL_1)=1$ for all $t\in\mathcal{T}$. Then $(u_1b)(u_1b)=(u_1b)$ and hence $u_1=b$ and with $w_t=u_tw_t'$ for all $t\in\mathcal{T}$ we have (e).

Finally [18, Proposition 7.5] implies (f), and (g) and (h) are clear.

For similar reasons, we have:

Proposition 2.3. (a) the \mathcal{O} -algebra homomorphism $M(W(b)): \mathcal{O}D \to (\mathcal{O}K_1)W(b)$ such that $\alpha \mapsto \alpha W(b)$ for all $\alpha \in \mathcal{O}D$ is a C-injection such that $M(W(b))(\mathcal{O}Z(D)) = (\mathcal{O}Z(D))W(b) \leq (\mathcal{O}L_1)W(b)$,

- (b) there is an \mathcal{O} -simple subalgebra \mathcal{S}_1 of $(\mathcal{O}L_1)W(b)$ such that $W(b) \in \mathcal{S}_1$, $\mathcal{S}_1 \cong M_{r_1}(\mathcal{O})$ as \mathcal{O} -algebras, $(\mathcal{O}L_1)W(b) = \mathcal{S}_1 + J((\mathcal{O}L_1)W(b))$, $(\mathcal{O}K_1)W(b) = \mathcal{S}_1 + J((\mathcal{O}K_1)W(b))$, \mathcal{S}_1 is a maximal \mathcal{O} -semi-simple \mathcal{O} -subalgebra of both $(\mathcal{O}L_1)W(b)$ and $(\mathcal{O}K_1)W(b)$ and $J(\mathcal{O})\mathcal{S}_1 = \mathcal{S}_1 \cap J((\mathcal{O}K_1)W(b)) = \mathcal{S}_1 \cap J((\mathcal{O}L_1)W(b))$;
- (c) $C_{(\mathcal{O}K_1)W(b)}(\mathcal{S}_1) = (\mathcal{O}D)W(b)$ and $C_{(\mathcal{O}L_1)W(b)}(\mathcal{S}_1) = (\mathcal{O}Z(D))W(b)$ and the \mathcal{O} -linear "multiplication maps" $\mu: \mathcal{S}_1 \otimes_{\mathcal{O}} ((\mathcal{O}D)W(b)) \to (\mathcal{O}K_1)W(b)$ such that $s_1 \otimes_{\mathcal{O}} \alpha \mapsto s_1 \alpha$ for all $s_1 \in \mathcal{S}_1$ and all $\alpha \in (\mathcal{O}D)W(b)$, and $\mu: \mathcal{S}_1 \otimes_{\mathcal{O}} ((\mathcal{O}Z(D))W(b)) \to (\mathcal{O}L_1)W(b)$ such that $s_1 \otimes_{\mathcal{O}} \alpha \mapsto s_1 \alpha$ for all $s_1 \in \mathcal{S}_1$ and all $\alpha \in (\mathcal{O}Z(D))W(b)$ are \mathcal{O} -algebra isomorphisms; (d)

$$(\mathcal{O}C)W(b) = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}K_1)W(b))(tW(b))$$

and

$$(\mathcal{O}H_1)W(b) = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}L_1)W(b))(tW(b))$$

exhibit $(\mathcal{O}C)W(b)$ and $(\mathcal{O}H_1)W(b)$ as H_1/L_1 -crossed product \mathcal{O} -algebras with

$$((\mathcal{O}C)W(b))_{tL_1} = ((\mathcal{O}K_1)W(b))(tW(b))$$

and

$$((\mathcal{O}H_1)W(b))_{tL_1} = ((\mathcal{O}L_1)W(b))(tW(b))$$

for all $t \in \mathcal{T}$;

(e) for each $t \in \mathcal{T}$, there is an element $w'_t \in ((\mathcal{O}L_1)W(b))^{\times}$ such that

$$v'_{t} = w'_{t}(tW(b)) \in C_{(\mathcal{O}L_{1})W(b)(tW(b))}(\mathcal{S}_{1}) \cap ((\mathcal{O}H_{1})W(b))^{\times}, \quad v'_{1} = w'_{1} = W(b),$$

$$C_{(\mathcal{O}H_{1})W(b)}(\mathcal{S}_{1}) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}Z(D))W(b))v'_{t}),$$

$$C_{(\mathcal{O}C)W(b)}(\mathcal{S}_{1}) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}D)W(b))v'_{t}),$$

 $\begin{array}{lll} v_t'\alpha(v_t')^{-1} = t\alpha t^{-1} = \ ^t\alpha \ for \ all \ \alpha \in (\mathcal{O}D)W(b), \ v_t'\alpha(v_t')^{-1} = (w_t')(\ ^t\alpha)(w_t')^{-1} \ for \ all \ \alpha \in (\mathcal{O}K_1)W(b) \ and \ v_t' \in N_{((\mathcal{O}C)W(b))^{\times}}((\mathcal{O}K_1)W(b)) \cap N_{((\mathcal{O}C)W(b))^{\times}}((\mathcal{O}L_1)W(b)) \ for \ all \ t \in \mathcal{T}. \ Also \ \mathcal{A}' = \bigoplus_{t \in \mathcal{T}} \mathcal{O}v_t' \ is \ a \ twisted \ H_1/L_1\text{-group} \ \mathcal{O}\text{-subalgebra} \ of \ (\mathcal{O}H_1)W(b) \ with \ associated \ c' \in Z^2(H_1/L_1,f(k^{\times})) \ such \ that \ (c')^m = 1 \ and \ c'(tL_1,L_1) = c'(L_1,tL_1) = 1 \ for \ all \ t \in \mathcal{T}; \end{array}$

(f) multiplication

$$\mu_1: \mathcal{S}_1 \otimes C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) \to (\mathcal{O}C)W(b)$$

such that $s_1 \otimes \alpha \mapsto s_1 \alpha$ for all $s_1 \in \mathcal{S}_1$ and all $\alpha \in C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1)$ is an \mathcal{O} -algebra isomorphism;

(g) $(\mathcal{O}H_1)W(b)J((\mathcal{O}L_1)W(b))$ is an H_1/L_1 -graded ideal of $(\mathcal{O}H_1)W(b)$ and hence $(\mathcal{O}H_1)W(b) = ((\mathcal{O}H_1)W(b))/((\mathcal{O}H_1)W(b)J((\mathcal{O}H_1)W(b)))$ is an H_1/L_1 -crossed product k-algebra with

$$((\widetilde{\mathcal{O}H_1})W(b))_{tL_1} = [((\mathcal{O}L_1)W(b)(tb) + (\mathcal{O}H_1)W(b)J((\mathcal{O}L_1)W(b))] / [(\mathcal{O}H_1)W(b)J((\mathcal{O}L_1)W(b))]$$

for all $t \in \mathcal{T}$ and $(\mathcal{O}H_1)W(b)_{L_1} \cong \mathcal{S}_1/(J(\mathcal{O})\mathcal{S}_1) \cong M_{r_1}(k)$ as k-algebras. Moreover, the injection $i' : \mathcal{A}' = \bigoplus_{t \in \mathcal{T}} \mathcal{O}v'_t \to (\mathcal{O}H_1)W(b)$ induces an H_1/L_1 -graded isomorphism of $\mathcal{A}' = \mathcal{A}'/(J(\mathcal{O})\mathcal{A}')$ onto the associated "Clifford extension" of $(\mathcal{O}H_1)W(b)$ with respect to $(\mathcal{O}H_1)W(b)J((\mathcal{O}L_1)W(b))$; and

(h) let \mathcal{L}' denote the \mathcal{O} -free twisted \mathcal{N} -group algebra with \mathcal{O} -free basis $\{(d, tL_1) \mid d \in D, t \in \mathcal{T}\}$ such that $(d_1, t_1L_1)(d_2, t_2L_1) = c'(t_1L_1, t_2L_1)(d_1(^{t_1}d_2), t_3L_1)$, where $d_1, d_2 \in D$ and $t_1, t_2 \in \mathcal{T}$ and $(t_1L_1)(t_2L_1) = t_3L_1$ for a unique $t_3 \in \mathcal{T}$. Then \mathcal{L}' is \mathcal{O} -algebra isomorphic to $C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}D)W(b))v'_t$ via the \mathcal{O} -linear map such that $(d, tL_1) \mapsto dW(b)v'_t$ for all $d \in D$ and all $t \in \mathcal{T}$.

Remark 2.4. The "Clifford extension" of Proposition 2.3(g) is the "Clifford extension" of kH_1 with respect to the irreducible character $\operatorname{Res}_{L_1}^{K_1}(\bar{\theta}_1) = \operatorname{char}(\operatorname{Res}_{L_1}^{K_1}(\bar{V}_1))$ of kL_1 .

By Propositions 2.1 and 2.3, a Morita equivalence will follow from the proof that the \mathcal{O} -free twisted H_1/L_1 -group algebras \mathcal{A} and \mathcal{A}' are H_1/L_1 -graded isomorphic \mathcal{O} -algebras. Applying Propositions 2.1 and 2.3, Remarks 2.2 and 2.4 and Lemma 1.13(b), it suffices to prove that the associated "Clifford extensions" of $(\mathcal{O}H)b$ with respect to $(\mathcal{O}H)bJ((\mathcal{O}L)b)$ and of $(\mathcal{O}H_1)W(b)$ with respect to $(\mathcal{O}H_1)W(b)J((\mathcal{O}L_1)W(b))$ are isomorphic.

At this point, we observe that it suffices to assume that A is cyclic of prime order q.

Consequently, we can apply the proof of [14, Proposition 3.3] that is a consequence of [14, Lemma 3.2] of E.C. Dade working over k as follows.

Let $\tilde{H}=H\rtimes A$ and $\tilde{L}=L\rtimes A$, so that $L extstyle \tilde{H}$ and $\tilde{L} extstyle \tilde{H}$ since $H=LH_1$ and A centralizes H_1 . We note here that $(\mathcal{K},\mathcal{O},k)$ is "big enough" for all subgroups of \tilde{H} . As $\gamma=\operatorname{Res}_L^K(\theta)\in\operatorname{Irr}(L)^{\tilde{H}}$ and (|L|,|A|)=1, γ has a unique canonical extension $\tilde{\gamma}\in\operatorname{Irr}(\tilde{L})^{\tilde{H}}$ such that $A\leq\operatorname{Ker}(\det(\tilde{\gamma}))$. Then $\bar{\gamma}=\operatorname{Res}_L^K(\bar{\theta})$ is the unique irreducible character of $(kL)\bar{b}$ and $\bar{\gamma}$ is an \tilde{H} -stable irreducible character of $k\tilde{L}$ that extends $\bar{\gamma}$. As in [14, Lemma 3.2], since $\tilde{H}=\tilde{L}H$, [3, Theorem 4.4] implies that the "Clifford extensions" of kH with respect to $\bar{\gamma}=\operatorname{Res}_L^K(\bar{\theta})$ and of $k\tilde{H}$ with respect to $\bar{\gamma}$ are isomorphic twisted H_1/L_1 -graded k-algebras.

Note that $C_H(A) = H_1$ and let $\tilde{H}_1 = H_1 \times A$ and $\tilde{L}_1 = L_1 \times A$, so that $L_1 \leq \tilde{H}_1$ and $\tilde{L}_1 \leq \tilde{H}_1$. Set $\delta = \operatorname{Res}_{L_1}^{K_1}(\theta_1) \in \operatorname{Irr}(L_1)^{\tilde{H}_1}$. Then δ has q different extensions to irreducible characters $\delta \times \lambda \in \operatorname{Irr}(\tilde{L}_1)$ for all $\lambda \in \operatorname{Irr}(A)$. Similarly $\bar{\delta}$ is the unique irreducible character of $kL_1\overline{W}(b)$ and $\overline{\delta} \times \overline{\lambda}$ is an \tilde{H}_1 -stable irreducible character of $k\tilde{L}_1$ that extends $\bar{\delta}$ for each $\lambda \in \operatorname{Irr}(A)$.

As above, the "Clifford extensions" of kH_1 with respect to $\bar{\delta}$ and of $k\tilde{H}_1$ with respect to $\bar{\delta} \times \bar{\lambda}$ are isomorphic twisted H_1/L_1 -graded k-algebras for each $\lambda \in Irr(A)$.

Clearly $\gamma = \operatorname{Res}_{L}^{K}(\theta) \in \operatorname{Irr}(b)$, where $b \in B\ell(L)$ has defect group Z(D) and $Z(D) \leq \operatorname{Ker}(\gamma)$. Also $\tilde{\gamma}$ lies in a block of \tilde{L} with defect group Z(D) that covers b and $Z(D) \leq \operatorname{Ker}(\tilde{\gamma})$. Similarly $\delta = \operatorname{Res}_{L_{1}}^{K_{1}}(\theta_{1}) \in \operatorname{Irr}(W(b))$, where $W(b) \in B\ell(L_{1})$ has defect group Z(D), $Z(D) \leq \operatorname{Ker}(\delta)$ and $\delta \times \lambda$ lies in a block of \tilde{L}_{1} with defect group Z(D) that covers W(b) and $Z(D) \leq \operatorname{Ker}(\delta \times \lambda)$ for all $\lambda \in \operatorname{Irr}(A)$.

Fix $\lambda \in Irr(A)$.

We may view $\tilde{\gamma}$ and $\delta \times \lambda$ as elements of $\operatorname{Irr}(\tilde{L}/Z(D))$ and $\operatorname{Irr}(\tilde{L}_1/Z(D))$, resp.; in which case we have

$$(2.1) \qquad (\operatorname{Res}_{\tilde{L}_{1}}^{\tilde{L}}(\tilde{\gamma}), \ \delta \times \lambda)_{\tilde{L}_{1}} = (\operatorname{Res}_{\tilde{L}_{1}/Z(D)}^{\tilde{L}/Z(D)}(\tilde{\gamma}), \delta \times \lambda)_{\tilde{L}_{1}/Z(D)}.$$

Let \tilde{V} be an \mathcal{O} -free indecomposable $\mathcal{O}\tilde{L}$ -module that affords $\tilde{\gamma}$ and let \tilde{W} be an \mathcal{O} -free indecomposable $\mathcal{O}\tilde{L}_1$ -module that affords $\delta \times \lambda$. Here $Z(D) \leq \operatorname{Ker}(\tilde{V})$ and \tilde{V} lies in a block of \tilde{L} with defect group Z(D) so that \tilde{V} is an irreducible $k\tilde{L}$ -module with character $\tilde{\gamma}$. Moreover, we may view \tilde{V} as an irreducible $k(\tilde{L}/Z(D))$ -module that lies in a block of defect 0 of $\tilde{L}/Z(D)$. Similarly, $Z(D) \leq \operatorname{Ker}(\tilde{W})$ and \tilde{W} lies in a block of \tilde{L}_1 with defect group Z(D) so that \tilde{W} is an irreducible $k\tilde{L}_1$ -module with character $\delta \times \lambda$. Clearly we may view \tilde{W} as an irreducible $k(L_1/Z(D))$ -module that lies in a block of defect 0 of $L_1/Z(D)$. Here the multiplicity ω of \tilde{W} as a $k\tilde{L}_1$ -module composition factor of $\operatorname{Res}_{\tilde{L}_1}^{\tilde{L}/Z(D)}$. Now Lemma 1.18 and (2.1) imply that $\omega = (\operatorname{Res}_{\tilde{L}_1}^{\tilde{L}}(\tilde{\gamma}), \delta \times \lambda)_{\tilde{L}_1}$. Consequently, the proof of [14, Lemma 3.2] implies that we may choose $w'_t \in ((\mathcal{O}L_1)W(b))^{\times}$ for each $t \in \mathcal{T}$, where $w'_1 = W(b)$ such that, setting $v'_t = tW(b)w'_t$ for all $t \in \mathcal{T}$, we have

(2.2)
$$C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}D)W(b))v_t'),$$

 $v_t'\alpha v_t'=t\alpha t^{-1}={}^t\alpha$ for all $\alpha\in(\mathcal{O}D)W(b)$, and such that there is an \mathcal{O} -algebra isomorphism $\Phi:C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1)=\oplus_{t\in\mathcal{T}}(((\mathcal{O}D)W(b))v_t')\to C_{(\mathcal{O}G)b}(\mathcal{S})=\oplus_{t\in\mathcal{T}}(((\mathcal{O}D)b)v_t)$ such that $(\alpha W(b))v_t'\mapsto(\alpha b)v_t$ for all $\alpha\in\mathcal{O}D$ and all $t\in\mathcal{T}$. Consequently with this choice, we have $c'(t_1L_1,t_2L_1)=c(t_1L_1,t_2L_1)$ for all $t_1,t_2\in\mathcal{T}$. Now Propositions 2.1(e), (f) and 2.3(e), (f) imply that $\mathcal{O}Gb$ -mod and $\mathcal{O}CW(b)$ -mod are Morita equivalent.

Let $S = \operatorname{End}_{\mathcal{O}}(U)$ and $S_1 = \operatorname{End}_{\mathcal{O}}(U_1)$, where U, U_1 are \mathcal{O} -free modules of ranks r, r_1 , respectively. Then, as in [8, Section 4], since $\mu : S \otimes_{\mathcal{O}} C_{(\mathcal{O}G)b}(S) \to (\mathcal{O}G)b$ and $\mu_1 : S_1 \otimes C_{(\mathcal{O}C)W(b)}(S_1) \to (\mathcal{O}C)W(b)$ of Propositions 2.1(f) and 2.3(f) are \mathcal{O} -algebra isomorphisms, the $(\mathcal{O}G)b$ -mod- $(\mathcal{O}C)W(b)$ bimodule M inducing the Morita equivalence above is given explicitly by

$$M = (U \otimes_{\mathcal{O}} (C_{(\mathcal{O}G)b}(\mathcal{S})_{\Phi})) \otimes_{C_{(\mathcal{O}G)W(b)}(\mathcal{S}_1)} (C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) \otimes_{\mathcal{O}} U_1^*),$$

where $\Phi: C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) \to C_{(\mathcal{O}G)b}(\mathcal{S})$ is the \mathcal{O} -algebra isomorphism above and $U_1^* = \operatorname{Hom}_{\mathcal{O}}(U_1, \mathcal{O})$ is the dual module of U_1 .

Thus $M \stackrel{\sim}{=} U \otimes_{\mathcal{O}} (C_{(\mathcal{O}G)b}(\mathcal{S})_{\Phi}) \otimes_{\mathcal{O}} U_1^*$ in $(\mathcal{O}G)b$ -mod- $(\mathcal{O}C)W(b)$.

Using the method of [8, Section 4], we show that the indecomposible $(\mathcal{O}G) \otimes_{\mathcal{O}} (\mathcal{O}C)$ -module $\mathcal{M} = U \otimes_{\mathcal{O}} (C_{(\mathcal{O}G)b}(\mathcal{S})_{\Phi}) \otimes_{\mathcal{O}} U_1^*$ has ΔD as a vertex and a trivial source.

Here $D \times D$ is the defect group of the block corresponding to $b \otimes_{\mathcal{O}} W(b)$ in $(\mathcal{O}G) \otimes_{\mathcal{O}} (\mathcal{O}C) \stackrel{\sim}{=} \mathcal{O}(G \times C)$. Thus \mathcal{M} , viewed in $(\mathcal{O}G) \otimes_{\mathcal{O}} (\mathcal{O}C)$ -mod, is $D \times D$ -projective. Following [8, Section 4] and noting that $D \subseteq G$, that the isomorphism $\mu: \mathcal{S} \otimes C_{(\mathcal{O}G)b}(\mathcal{S}) \to (\mathcal{O}G)b$ sends $b \otimes_{\mathcal{O}} db \to db$ for all $d \in D$ and that the isomorphism $\mu_1: \mathcal{S}_1 \otimes_{\mathcal{O}} C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) \to (\mathcal{O}C)W(b)$ sends $W(b) \otimes dW(b) \mapsto dW(b)$ for all $d \in D$, we observe that the restriction of \mathcal{M} to $D \times D$ is isomorphic to a direct sum of the modules $((\mathcal{O}D)b)v_t$ for all $t \in \mathcal{T}$. Here $(\mathcal{O}D)t \stackrel{\sim}{=} ((\mathcal{O}D)b)v_t$ in $\mathcal{O}(D \times D)$ -mod and so $((\mathcal{O}D)b)v_t \stackrel{\sim}{=} \operatorname{Ind}_{R_t}^{\mathcal{O}(D \times D)}(\mathcal{O})$ in $\mathcal{O}(D \times D)$ -mod, where

 $R_t = \{(d, t^{-1}dt) \mid d \in D\}$ for each $t \in \mathcal{T}$. Thus [5, III, Lemma 4.6] implies that \mathcal{M} has ΔD as a vertex and a trivial source.

Now we proceed to demonstrate that such a Morita equivalence can be chosen so as to satisfy (ii) of Theorem 2.

Let $\mathcal{I}((\mathcal{O}D)b) = \sum_{d \in D^{\#}} \mathcal{O}(d-1)b$ and $\mathcal{I}((\mathcal{O}Z(D))b) = \sum_{d \in Z(D)^{\#}} \mathcal{O}(d-1)b$ denote the augmentation ideals of $(\mathcal{O}D)b$ and $(\mathcal{O}Z(D))b$, resp. as in Lemma 1.14. Set $\mathcal{I}((\mathcal{O}L)b) = (\mathcal{O}L)b\mathcal{I}((\mathcal{O}Z(D))b)$ and $\mathcal{I}((\mathcal{O}K)b) = (\mathcal{O}K)b\mathcal{I}((\mathcal{O}D)b)$. Then $\mathcal{I}((\mathcal{O}L)b) = \mathcal{S}\mathcal{I}(\mathcal{O}Z(D)b) = \mathcal{I}(\mathcal{O}Z(D)b)\mathcal{S}$, $\mathcal{I}((\mathcal{O}L)b)$ is an ideal of $(\mathcal{O}L)b$, $\mathcal{I}((\mathcal{O}L)b) \leq \mathcal{I}((\mathcal{O}L)b)$, and $\mathcal{I}((\mathcal{O}L)b) = \bigoplus_{d \in Z(D)^{\#}} \mathcal{S}(d-1)$ and $(\mathcal{O}L)b = \mathcal{S} \oplus \mathcal{I}((\mathcal{O}L)b) \to \mathcal{I}((\mathcal{O}L)b)$ in \mathcal{S} -mod- \mathcal{S} . Thus the \mathcal{O} -algebra projection $\pi_{\mathcal{S}} : (\mathcal{O}L)b = \mathcal{S} \oplus \mathcal{I}((\mathcal{O}L)b) \to \mathcal{S}$ in \mathcal{S} -mod- \mathcal{S} is an epimorphism with $\operatorname{Ker}(\pi_{\mathcal{S}}) = \mathcal{I}((\mathcal{O}L)b)$. Moreover Proposition 2.1(c) implies that $C_{(\mathcal{O}L)b}(\mathcal{S}) = \mathcal{O}Z(D)b$.

Similar facts hold for $(\mathcal{O}K)b$: $\mathcal{I}((\mathcal{O}K)b) = \mathcal{SI}((\mathcal{O}D)b) = \mathcal{I}((\mathcal{O}D)b)\mathcal{S}$, $\mathcal{I}((\mathcal{O}K)b)$ is an ideal of $(\mathcal{O}K)b$, $\mathcal{I}((\mathcal{O}K)b) \leq \mathcal{I}((\mathcal{O}K)b)$, $\mathcal{I}((\mathcal{O}K)b) = \bigoplus_{d \in D^{\#}} \mathcal{S}(d-1)b$ and $(\mathcal{O}K)b = \mathcal{S} \oplus \mathcal{I}((\mathcal{O}K)b)$ in \mathcal{S} -mod- \mathcal{S} . Also the projection $\pi_{\mathcal{S}} : (\mathcal{O}K)b = \mathcal{S} \oplus \mathcal{I}((\mathcal{O}K)b) \to \mathcal{S}$ in \mathcal{S} -mod- \mathcal{S} is an epimorphism with $\operatorname{Ker}(\pi_{\mathcal{S}}) = \mathcal{I}((\mathcal{O}K)b)$ and $C_{(\mathcal{O}K)b}(\mathcal{S}) = (\mathcal{O}D)b$.

Similarly, we define $\mathcal{I}((\mathcal{O}D)W(b))$, $\mathcal{I}((\mathcal{O}Z(D))W(b))$, $\mathcal{I}((\mathcal{O}L_1)W(b))$, $\mathcal{I}((\mathcal{O}K_1)W(b))$, $\pi_{\mathcal{S}_1}:(\mathcal{O}L_1)W(b)\to\mathcal{S}_1$ and $\pi_{\mathcal{S}_1}:(\mathcal{O}K_1)W(b)\to\mathcal{S}_1$ and we have the corresponding facts.

Extending to \mathcal{K} , it is clear that

$$\theta = Tr_{\mathcal{S}} \circ \pi_{\mathcal{S}} : (\mathcal{O}K)b \to \mathcal{O} \text{ and}$$

 $\theta_1 = Tr_{\mathcal{S}_1} \circ \pi_{\mathcal{S}_1} : (\mathcal{O}K_1)W(b) \to \mathcal{O}$

canonically induce irreducible characters of K and K_1 , respectively, with D contained in their kernels and such that $\theta \in \operatorname{Irr}_{\mathcal{K}}(b)$ and $\theta_1 \in \operatorname{Irr}_{\mathcal{K}}(W(b))$.

Lemma 2.5. (a) $b + \mathcal{I}((\mathcal{O}L)b) \leq ((\mathcal{O}L)b)^{\times}, ((\mathcal{O}L)b)^{\times} = \mathcal{S}^{\times}(b + \mathcal{I}((\mathcal{O}L)b)) = (b + \mathcal{I}((\mathcal{O}L)b))\mathcal{S}^{\times} \text{ and } \mathcal{S}^{\times} \cap (b + \mathcal{I}((\mathcal{O}L)b)) = b;$ (b)

$$N_{((\mathcal{O}L)b)^{\times}}(\mathcal{S}^{\times}) = \mathcal{S}^{\times} \times (b + \mathcal{I}(\mathcal{O}Z(D)b))$$

and

$$N_{b+\mathcal{I}((\mathcal{O}L)b)}(\mathcal{S}^{\times}) = C_{b+\mathcal{I}((\mathcal{O}L)b)}(\mathcal{S}^{\times}) = b + \mathcal{I}(\mathcal{O}Z(D)b).$$

Similar results hold for $(\mathcal{O}K)b$ with $(\mathcal{O}D)b$ in place of $\mathcal{O}Z(D)b$.

Proof. Clearly $b + \mathcal{I}((\mathcal{O}L)b) \subseteq b + J((\mathcal{O}L)b) \preceq ((\mathcal{O}L)b)^{\times}$. Let $i \in \mathcal{I}((\mathcal{O}L)b)$. Then there is an element $j \in J((\mathcal{O}L)b)$ such that (b+i)(b+j)=b. Thus $j=-i-ij\in \mathcal{I}((\mathcal{O}L)b)$ and hence $b+\mathcal{I}((\mathcal{O}L)b) \preceq ((\mathcal{O}L)b)^{\times}$. Let $x \in ((\mathcal{O}L)b)^{\times}$, so that x=s+i for some $s \in \mathcal{S}$ and $i \in \mathcal{I}((\mathcal{O}L)b)$. The projection $\pi_{\mathcal{S}} : (\mathcal{O}L)b \to \mathcal{S}$ yields an element $t \in \mathcal{S}$ such that st=ts=b. Thus $x=stx=s(b+ti)\in \mathcal{S}^{\times}(b+\mathcal{I}((\mathcal{O}L)b))$ and, since $\pi_{\mathcal{S}}(x)=s$, (a) holds. For (b), note that $\mathcal{S}^{\times} \preceq N_{((\mathcal{O}L)b)^{\times}}(\mathcal{S}^{\times})=\mathcal{S}^{\times}N_{b+\mathcal{I}((\mathcal{O}L)b)}(\mathcal{S}^{\times})$ and $N_{b+\mathcal{I}((\mathcal{O}L)b)}(\mathcal{S}^{\times}) \preceq N_{((\mathcal{O}L)b)^{\times}}(\mathcal{S}^{\times})$. Thus

$$[\mathcal{S}^{\times}, N_{b+\mathcal{T}(\mathcal{O}L)b})(\mathcal{S}^{\times})] \subset \mathcal{S}^{\times} \cap (b+\mathcal{T}((\mathcal{O}L)b)) = b$$

and (b) follows from Propositions 2.1(c) and 1.12(e).

Corollary 2.6. $b+J((\mathcal{O}L)b)=(b+J(\mathcal{S}))(b+\mathcal{I}((\mathcal{O}L)b))=(b+\mathcal{I}((\mathcal{O}L)b))(b+J(\mathcal{S})).$ A similar result holds for $(\mathcal{O}K)b.$

Proof. Since $b+J((\mathcal{O}L)b)=((b+J((\mathcal{O}L)b))\cap \mathcal{S}^{\times})(b+\mathcal{I}((\mathcal{O}L)b))$ by Lemma 2.5(a) and $(b+J((\mathcal{O}L)b))\cap \mathcal{S}^{\times}=b+J(\mathcal{S})$ by Proposition 1.12(a), we are done.

Lemma 2.7. (a) If $x \in ((\mathcal{O}G)b)^{\times}$, acting by conjugation, normalizes $(\mathcal{O}L)b$ and $\mathcal{I}((\mathcal{O}L)b)$, and if $u \in (\mathcal{O}L)b$, then ${}^{x}\pi_{\mathcal{S}}(u) = \pi_{x_{\mathcal{S}}}({}^{x}u)$; and

(b) if $x \in b + \mathcal{I}((\mathcal{O}L)b)$ and $u \in (\mathcal{O}L)b$, then $x^{-1} \in b + \mathcal{I}((\mathcal{O}L)b)$ and $\pi_{\mathcal{S}}(^{x}u) = \pi_{\mathcal{S}}(u)$. Similar results hold for $(\mathcal{O}K)b$.

Proof. Assume the conditions of (a) so that u = s + i for unique $s \in \mathcal{S}$ and $i \in \mathcal{I}((\mathcal{O}L)b)$. Then ${}^xu = {}^xs + {}^xi$, so that $\pi_{x_{\mathcal{S}}}({}^xu) = {}^xs = {}^x\pi_{\mathcal{S}}(u)$. Assume the conditions of (b) so that, $x^{-1} \in b + \mathcal{I}((\mathcal{O}L)b)$ by Lemma 2.5(a) and $\pi_{\mathcal{S}}({}^xu) = \pi_{\mathcal{S}}(xux^{-1}) = \pi_{\mathcal{S}}(x)\pi_{\mathcal{S}}(u)\pi_{\mathcal{S}}(x^{-1}) = \pi_{\mathcal{S}}(u)$ and we are done.

Remark 2.8. If $g \in G$, then every element of $((\mathcal{O}L)b)^{\times}(gb)$ normalizes both $(\mathcal{O}L)b$ and $\mathcal{I}((\mathcal{O}L)b)$.

Let Σ denote the set of maximal \mathcal{O} -semi-simple \mathcal{O} -subalgebras of $(\mathcal{O}L)b$. Here $\mathcal{S} \in \Sigma$, all elements of Σ are \mathcal{O} -simple and $(\mathcal{O}L)b = \mathcal{S}^{\times}(b + \mathcal{I}((\mathcal{O}L)b))$. Thus $b + \mathcal{I}((\mathcal{O}L)b)$ acts transitively on Σ by conjugation ([18, Lemma 45.6]).

Lemma 2.9. Let X be a finite subgroup of $Aut_{\mathcal{O}}((\mathcal{O}L)b)$ of order prime to p that leaves $\mathcal{I}((\mathcal{O}L)b)$ invariant. Then there is an $x \in b + \mathcal{I}((\mathcal{O}L)b)$ such that ${}^x\mathcal{S}$ is X-invariant.

Proof. Set $\mathcal{G} = (b+J((\mathcal{O}L)b)) \rtimes X$, so that \mathcal{G} permutes Σ . Since $b+\mathcal{I}((\mathcal{O}L)b)$ and $b+J((\mathcal{O}L)b)$ are transitive on Σ , $\mathcal{G} = (b+J((\mathcal{O}L)b))N_{\mathcal{G}}(\mathcal{S}^{\times}) = (b+\mathcal{I}((\mathcal{O}L)b))N_{\mathcal{G}}(\mathcal{S}^{\times})$ since $b+\mathcal{I}((\mathcal{O}L)b) \leq \mathcal{G}$ by Lemma 2.5. Applying [18, Lemma 45.6], it suffices to prove that $N_{b+J((\mathcal{O}L)b)}(\mathcal{S}^{\times})$ has a complement in $N_{\mathcal{G}}(\mathcal{S}^{\times})$. Here $N_{b+J((\mathcal{O}L)b)}(\mathcal{S}^{\times}) = N_{b+J((\mathcal{O}L)b)}(\mathcal{S}) = (b+\mathcal{I}(\mathcal{O}Z(D)b)) \times (b+J(\mathcal{S}))$ by Lemma 2.5(b) and Lemma 1.5(b). Also $b+J(\mathcal{S})$ and $b+\mathcal{I}(\mathcal{O}Z(D)b) = N_{b+\mathcal{I}((\mathcal{O}L)b)}(\mathcal{S}^{\times})$ are normal subgroups of $N_{\mathcal{G}}(\mathcal{S}^{\times})$ and $N_{\mathcal{G}}(\mathcal{S}^{\times})/N_{b+J((\mathcal{O}L)b)}(\mathcal{S}^{\times}) = X$. Set

$$\overline{N_{\mathcal{G}}(\mathcal{S}^{\times})} = N_{\mathcal{G}}(\mathcal{S}^{\times})/(b + \mathcal{I}(\mathcal{O}Z(D)b)).$$

Then $b+J(\mathcal{S})\tilde{=}\overline{b+J(\mathcal{S})} \leq \overline{N_{\mathcal{G}}(\mathcal{S}^{\times})}$ and [18, Lemma 45.6] implies that $\overline{b+J(\mathcal{S})}$ has a complement \bar{Y} in $\overline{N_{\mathcal{G}}(\mathcal{S}^{\times})}$. The inverse image Y of \bar{Y} in $N_{\mathcal{G}}(\mathcal{S}^{\times})$ satisfies $b+\mathcal{I}(\mathcal{O}Z(D)b)\leq Y$ and $Y/(b+\mathcal{I}(\mathcal{O}Z(D)b))\tilde{=}X$. Since $b+\mathcal{I}(\mathcal{O}Z(D)b)$ is an Abelian group, [9, I, Hauptsatz 17.4] and Lemma 1.14(b) imply that $b+\mathcal{I}(\mathcal{O}Z(D)b)$ has a complement B in Y. Clearly B is a complement to $N_{b+J((\mathcal{O}L)b)}(\mathcal{S}^{\times})$ in $N_{\mathcal{G}}(\mathcal{S}^{\times})$ and we are done.

Corollary 2.10. A leaves invariant an element of Σ .

We shall henceforth assume that $S \in \Sigma$ is A-invariant. It follows that $\pi_S : (\mathcal{O}L)b \to \mathcal{S}$ and $\pi_S : (\mathcal{O}K)b \to \mathcal{S}$ are A-projections and that $C_{(\mathcal{O}H)b}(S) = \bigoplus_{t \in \mathcal{T}} (\mathcal{O}Z(D)b)v_t$ and $C_{(\mathcal{O}G)b}(S) = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}D)b)v_t$ are A-invariant. In fact, for each $t \in \mathcal{T}$, $C_{((\mathcal{O}L)b)(tb)}(S) = C_{((\mathcal{O}L)b)v_t}(S) = \mathcal{O}Z(D)bv_t$ and $C_{(\mathcal{O}G)b(tb)}(S) = (\mathcal{O}D)bv_t$ are A-invariant and, from Proposition 2.1(e), $v_t = w_t(tb)$ for some $w_t \in ((\mathcal{O}L)b)^{\times}$. Consequently $w_t = s_t\alpha_t$ for unique $s_t \in \mathcal{S}^{\times}$ and $\alpha_t \in b + \mathcal{I}((\mathcal{O}L)b)$ by Lemma 2.5(a) for each $t \in \mathcal{T}$. Since $w_1 = b$, we have $s_1 = \alpha_1 = b$.

Lemma 2.11. (a) A acts trivially on $C_{(\mathcal{O}H)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} \mathcal{O}Z(D)bv_t$ and $C_{(\mathcal{O}G)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} (\mathcal{O}D)bv_t$; and

(b) s_t and α_t are fixed by A for all $t \in \mathcal{T}$.

Proof. Let $t \in \mathcal{T}$ and $a \in A$. Then $v_t^a = \alpha v_t$ for a unique $\alpha \in \mathcal{O}Z(D)b$. Hence $\alpha^{|a|} = b$. Since (|a|, p) = 1, Lemma 1.13(a) and Proposition 1.8 imply that $\alpha = \gamma b$ for a unique $\gamma \in \mathcal{O}^{\times}$ such that $\gamma^{|a|} = 1$. However $v_t^m = \delta b$ for a unique $\delta \in \Omega \leq$ $\{x \in \mathcal{O}^{\times} | x^m = 1\}$ by Proposition 2.1. Hence $(v_t^a)^m = \gamma^m(\delta b) = (\delta b)^a = \delta b$ so that $\gamma^m = 1$. As (|a|, m) = 1, we conclude that $\gamma = 1$ and (a) follows. Since $v_t = s_t \alpha_t(tb)$ for unique $s_t \in \mathcal{S}^{\times}$ and $\alpha_t \in b + \mathcal{I}((\mathcal{O}L)b)$ and both \mathcal{S}^{\times} and $b + \mathcal{I}((\mathcal{O}L)b)$ are Ainvariant, Lemma 2.5(a) implies (b). Our proof is complete.

Recall that $G = \bigcup_{t \in \mathcal{T}} Kt$, where the union is disjoint. We define $\pi_{\mathcal{S}}^* : G \to \mathcal{S}^{\times}$ by $kt \mapsto \pi_{\mathcal{S}}(kb)s_t^{-1}$ for all $k \in K$ and all $t \in \mathcal{T}$ and we extend $\pi_{\mathcal{S}}^*$ to an \mathcal{O} -linear map $\pi_{\mathcal{S}}^*: \mathcal{O}G \to \mathcal{S}$. Since $s_1 = b$, $\pi_{\mathcal{S}}^*$ extends the \mathcal{O} -algebra A-epimorphism $\pi_{\mathcal{S}}: (\mathcal{O}K)b \to \mathcal{S}$. Clearly $\pi_{\mathcal{S}}^*(\alpha) = \pi_{\mathcal{S}}^*(\alpha b)$ for all $\alpha \in \mathcal{O}G$.

Lemma 2.12. Let $\alpha, \beta \in \mathcal{O}K$ and $t \in \mathcal{T}$. Then:

- (a) $\pi_{\mathcal{S}}^*(\alpha)\pi_{\mathcal{S}}^*(\beta t) = \pi_{\mathcal{S}}((\alpha\beta)b)s_t^{-1} = \pi_{\mathcal{S}}^*(\alpha\beta t);$
- (b) $\pi_{\mathcal{S}}^*(\alpha t\beta) = \pi_{\mathcal{S}}^*(\alpha(t\beta)t) = \pi_{\mathcal{S}}(\alpha(t\beta)b)s_t^{-1} = \pi_{\mathcal{S}}^*(\alpha)\pi_{\mathcal{S}}^*((t\beta)t) = \pi_{\mathcal{S}}^*(\alpha)\pi_{\mathcal{S}}^*(t\beta);$ (c) $\pi_{\mathcal{S}}^*(1) = b = \pi_{\mathcal{S}}^*(b), \ \pi_{\mathcal{S}}^*((1-b)\mathcal{O}G) = \pi_{\mathcal{S}}^*(\mathcal{O}G(1-b)) = 0 \ and \ \pi_{\mathcal{S}}^*: (\mathcal{O}G)b \to \mathcal{S}$ is a surjective \mathcal{O} -linear map; and
 - (d) $\pi_{\mathcal{S}}^*(v_t) = b \text{ and } s_t^{-1} \pi_{\mathcal{S}}(\beta b) s_t = \pi_{\mathcal{S}}(t(\beta b)).$

Proof. Clearly (a)–(c) hold. Since $v_t = s_t \alpha_t(tb)$, we have $\pi_{\mathcal{S}}^*(v_t) = \pi_{\mathcal{S}}(s_t \alpha_t) s_t^{-1}$ $= s_t s_t^{-1} = b$. Also $s_t^{-1} v_t = \alpha_t(tb) \in N_{((\mathcal{O}G)b)^{\times}}(\mathcal{S})$. Thus

$$s_t^{-1}\pi_{\mathcal{S}}(\beta b)s_t = s_t^{-1}v_t\pi_{\mathcal{S}}(\beta b)v_t^{-1}s_t = \pi_{\mathcal{S}}(^{\alpha_t(tb)}(\beta b)) = \pi_{\mathcal{S}}(^{tb}(\beta b)) = \pi_{\mathcal{S}}(^t(\beta b))$$

using Lemma 2.7, the fact that α_t and the normalize $(\mathcal{O}L)b$ and $\mathcal{I}((\mathcal{O}L)b)$ and the fact that $\alpha_t \in \text{Ker}(\pi_{\mathcal{S}})$. Our proof is complete.

Lemma 2.13. Let $k_1, k_2 \in K$ and $t_1, t_2 \in T$. Here $t_1t_2 = \ell t_3$ and $t_1^{-1} = \ell' t_4$ for unique $\ell, \ell' \in L_1$ and $t_3, t_4 \in \mathcal{T}$. Then:

- (a) $\pi_{\mathcal{S}}^*(k_1t_1)\pi_{\mathcal{S}}^*(k_2t_2) = c(t_1L_1, t_2L_1)^{-1}\pi_{\mathcal{S}}^*(k_1t_1k_2t_2);$ (b) $\pi_{\mathcal{S}}^*(k_1t_1)^{-1} = c(t_1L_1, t_4L_1)\pi_{\mathcal{S}}^*((k_1t_1)^{-1});$ and
- (c) $\pi_{\mathcal{S}}^{\mathcal{S}}((k_1t_1)^a) = e(t_1t_1, t_2t_1)\pi_{\mathcal{S}}^{\mathcal{S}}((k_1t_1)^a)$, and (c) $\pi_{\mathcal{S}}^{\mathcal{S}}((k_1t_1)^a) = \pi_{\mathcal{S}}^{\mathcal{S}}(k_1^at_1) = \pi_{\mathcal{S}}^{\mathcal{S}}(k_1^a)s_{t_1}^{-1} = \pi_{\mathcal{S}}^{\mathcal{S}}(k_1t_1)^a$ for all $a \in A$ and $\pi_{\mathcal{S}}^{\mathcal{S}}$: $\mathcal{O}G \to \mathcal{S}$ is an A-epimorphism in \mathcal{O} -mod.

Proof. Clearly $(k_1t_1)(k_2t_2) = k_1({}^{t_1}k_2)\ell t_3$ and $\pi_{\mathcal{S}}^*(k_1t_1k_2t_2) = \pi_{\mathcal{S}}(k_1({}^{t_1}k_2)\ell b)s_{t_1}^{-1}$. Also $\pi_{\mathcal{S}}^*(k_1t_1)\pi_{\mathcal{S}}^*(k_2t_2) = \pi_{\mathcal{S}}(k_1b)s_{t_1}^{-1}\pi_{\mathcal{S}}(k_2b)s_{t_2}^{-1} = \pi_{\mathcal{S}}(k_1b)\pi_{\mathcal{S}}(({}^{t_1}k_2)b)s_{t_1}^{-1}s_{t_2}^{-1} =$ $\pi_{\mathcal{S}}(k_1(t^1) \kappa_{\mathcal{S}}(k_2 t^2)) + \kappa_{\mathcal{S}}(k_1 t^2) \kappa_{\mathcal{S}}(k_1 t^2) \kappa_{\mathcal{S}}(k_1 t^2) + \kappa_{\mathcal{S}}(k_1 t^2) \kappa_{\mathcal{S}}(k_1 t^2) + \kappa_{\mathcal{S}}(k_1 t^2) \kappa_{\mathcal{S}}(k_1 t^2) + \kappa_{\mathcal{S}}(k_1$ Then (b) and (c) are immediate and we are done.

Recall the \mathcal{O} -algebra isomorphism $\Phi: C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) = \bigoplus_{t \in \mathcal{T}} ((\mathcal{O}D)W(b)v'_t) \to$ $C_{(\mathcal{O}G)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} (\mathcal{O}D)bv_t$ such that $(\alpha W(b))v_t' \mapsto (\alpha b)v_t$ for all $\alpha \in \mathcal{O}D$ and all $t \in \mathcal{T}$. Thus $v'_{t_1}v'_{t_2} = c(t_1L_1, t_2L_1)v'_{t_3}$, where $t_1t_2 \in L_1t_3$. For $t \in \mathcal{T}$, $v'_t =$ $w'_t(tW(b))$, where $w'_t \in ((\mathcal{O}L_1)W(b))^{\times} = \mathcal{S}_1^{\times}(W(b) + \mathcal{I}((\mathcal{O}L_1)W(b)))$, so that $w'_t =$ $s'_t \alpha'_t$ for unique $s'_t \in \mathcal{S}_1^{\times}$ and $\alpha'_t \in W(b) + \mathcal{I}((\mathcal{O}L_1)W(b))$. As above, define $\pi_{\mathcal{S}_1}^*$: $C = \bigcup_{t \in \mathcal{T}} K_1 t \to \mathcal{S}_1^{\times}$ by $k_1 t \mapsto \pi_{\mathcal{S}_1}(k_1 W(b))(s_t')^{-1}$ for all $k_1 \in K_1$ and $t \in \mathcal{T}$ and extend $\pi_{\mathcal{S}_1}^*$ to an \mathcal{O} -linear map $\pi_{\mathcal{S}_1}^* : \mathcal{O}C \to \mathcal{S}_1$. The proof of Lemma 2.13 with C, K_1, S_1 in place of G, K, S yields the following lemma.

Lemma 2.14. Let $k_1, k_2 \in K_1$ and $t_1, t_2 \in \mathcal{T}$. Here $t_1t_2 = \ell t_3$ and $t_1^{-1} = \ell' t_4$ for unique $\ell, \ell' \in L_1$ and $t_3, t_4 \in \mathcal{T}$. Then:

- (a) $\pi_{\mathcal{S}_1}^*(k_1t_1)\pi_{\mathcal{S}_1}^*(k_2t_2) = c(t_1L_1, t_2L_1)^{-1}\pi_{\mathcal{S}_1}^*(k_1t_1k_2t_2);$ (b) $\pi_{\mathcal{S}_1}^*(k_1t_1)^{-1} = c(t_1L_1, t_4L_1)\pi_{\mathcal{S}_1}^*((k_1t_1)^{-1});$ and
- (c) $\pi_{\mathcal{S}_1}^*: \mathcal{O}C \to \mathcal{S}_1$ is an epimorphism of \mathcal{O} -modules.

Observe that $(\mathcal{O}H)b$ can be viewed as an H/L-crossed product \mathcal{O} -algebra with $((\mathcal{O}H)b)_{tL} = (\mathcal{O}L)b(tb)$ for all $t \in \mathcal{T}$.

Thus Lemma 1.6 yields:

Lemma 2.15. $((\mathcal{O}H)b)^{\times} \cap ((\mathcal{O}L)b) = ((\mathcal{O}L)b)^{\times}$.

Lemma 2.16. *Let* $t \in \mathcal{T}$ *. Then:*

- (a) if $y \in (Kt)_{p'}$, then y is D-conjugate to an element $u \in (Lt)_{p'}$; and
- (b) if $u \in (Lt)_{p'}$, then $C_D(u) = C_D(t)$, $ub \in (\mathcal{O}L)b(tb) = (\mathcal{O}L)v_t$ and there is an element $\gamma \in b + \mathcal{I}((\mathcal{O}L)b)$ such that $(ub)^{\gamma} = sv_t$, where $s \in \mathcal{S}^{\times}$. Moreover, if $d \in C_D(u)$, then $(udb)^{\gamma} = s((db)v_t)$ and $\pi_S^*(udb) = s$.

Proof. If $y \in (Kt)_{p'}$, then, as G = HD, y is D-conjugate to an element $u \in$ $(H \cap (Kt))_{p'} = (Lt)_{p'}$ and (a) holds. Let $u \in (Lt)_{p'}$. Then $C_D(u) = C_D(t)$ and $ub \in ((\mathcal{O}L)b)v_t$. Set $X = \langle u \rangle$. Then Lemma 2.9 yields an element $z \in b + \mathcal{I}((\mathcal{O}L)b)$ such that X leaves ${}^z\mathcal{S}$ invariant. Consequently $(ub)^z \in N_{((\mathcal{O}H)b)^\times}(\mathcal{S}) \cap ((\mathcal{O}L)bv_t)$. Note that $((\mathcal{O}H)b)^{\times} \cap ((\mathcal{O}L)bv_t) = (\mathcal{O}L)b)^{\times}v_t$ because of Lemma 1.6. Thus $(ub)^z \in$ $(N_{((\mathcal{O}H)b)^{\times}}(\mathcal{S})\cap((\mathcal{O}L)b)^{\times})v_t = N_{((\mathcal{O}L)b)^{\times}}(\mathcal{S})v_t = (\mathcal{S}^{\times}\times(b+\mathcal{I}(\mathcal{O}Z(D)b)))v_t$ because of Lemma 2.5. Thus $(ub)^z = s\alpha v_t$ for unique $s \in \mathcal{S}^{\times}$ and $\alpha \in b + \mathcal{I}(\mathcal{O}Z(D)b)$. Set f = |u|, so that (f, p) = 1 and $s^f(\alpha v_t)^f = b$. Consequently, $s^f \in \mathcal{S}^{\times} \cap$ $C_{(\mathcal{O}G)b}(\mathcal{S}) = \mathcal{O}^{\times}b$ and $s^f = \sigma b$ for a unique $\sigma \in \mathcal{O}^{\times}$. Since (f,p) = 1, there is an element $\delta \in \mathcal{O}^{\times}$ such that $\delta^f = \sigma$. Then $(ub)^z = (\delta^{-1}s)(\alpha(\delta v_t))$, where $(\delta^{-1}s)^f = b = (\alpha(\delta v_t))^f$. Here $\delta^f v_t^f = (\delta v_t)^f \in (b + \mathcal{O}Z(D)b) \cap (\bigoplus_{t \in \mathcal{T}} \mathcal{O}v_t) = b$. Since $\alpha(\delta v_t) \in (b + J(\mathcal{O}Z(D)b))(\delta v_t) \subseteq (\mathcal{O}Z(D)b)^{\times}(\delta v_t)$ and $v_t \alpha v_t^{-1} = t\alpha t^{-1}$ for all $\alpha \in (\mathcal{O}D)b$ by Proposition 2.1(e), Lemma 1.11 with $X = (b + J(\mathcal{O}Z(D)b))E$ where $e = \delta v_t$ and $E = \langle \delta v_t \rangle$ and Lemma 1.14(a) imply the existence of an element $x \in b + \mathcal{I}(\mathcal{O}Z(D)b)$ such that $(\alpha(\delta v_t))^x = \delta v_t$. Thus $\gamma = zx \in (b + \mathcal{I}((\mathcal{O}L)b))$ is such that $(ub)^{\gamma} = (\delta^{-1}s)(\alpha(\delta v_t))^x = (\delta^{-1}s)(\delta v_t) = sv_t$. If $d \in C_D(u) = C_D(t)$, then $((ud)b)^{\gamma} = (ub)^{\gamma}(db) = s((db)v_t)$. Let $\gamma = b+j$ and $\gamma^{-1} = b+j'$, where $j, j' \in$ $\mathcal{I}((\mathcal{O}L)b)$. Then (b+j')((ud)b)(b+j) = (b+j')(b+u')(ud)b, where $(b+j')(b+u') \in \mathcal{I}((\mathcal{O}L)b)$. $b+\mathcal{I}((\mathcal{O}L)b)$, so Lemma 2.12 implies that $\pi_{\mathcal{S}}^*(((ud)b)^{\gamma})=\pi_{\mathcal{S}}^*((b+j')(ud)b(b+j))=$ $\pi_{\mathcal{S}}^*((ud)b) = \pi_{\mathcal{S}}^*(s(db)v_t) = s$ and we are done.

We extend $\theta = Tr_{\mathcal{S}} \circ \pi_{\mathcal{S}} : (\mathcal{O}K)b \to \mathcal{O} \text{ and } \theta_1 = Tr_{\mathcal{S}_1} \circ \pi_{\mathcal{S}_1} : (\mathcal{O}K_1)W(b) \to \mathcal{O}$ to \mathcal{O} -linear maps $\theta = Tr_{\mathcal{S}} \circ \pi_{\mathcal{S}}^* : \mathcal{O}G \to \mathcal{O}$ such that $g \mapsto Tr_{\mathcal{S}}(\pi_{\mathcal{S}}^*(gb))$ for all $g \in G$ and $\theta_1 = Tr_{\mathcal{S}_1} \circ \pi_{\mathcal{S}_1}^* : \mathcal{O}C \to \mathcal{O}$ such that $g \mapsto Tr_{\mathcal{S}_1}(\pi_{\mathcal{S}_1}^*(gW(b)))$ for all $g \in C$. Set $\mathcal{B} = C_{(\mathcal{O}G)b}(\mathcal{S})$ and $\mathcal{B}' = C_{\mathcal{O}CW(b)}(\mathcal{S}_1)$.

For the remainder of this article we extend coefficients to \mathcal{K} so that $\mathcal{KS} = M_r(\mathcal{K})$, $\mathcal{KS}_1 = M_{r_1}(\mathcal{K}), \ \mathcal{K}C_{(\mathcal{O}G)b}(\mathcal{S}) = \mathcal{KB} = \bigoplus_{t \in \mathcal{T}} (\mathcal{K}(db)v_t), \ \mathcal{K}C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) = \mathcal{KB}' = \mathcal{KS}_1 = \mathcal{KS}_1 = \mathcal{KS}_1 = \mathcal{KS}_2 = \mathcal{KS}_1 = \mathcal{KS}_2 = \mathcal{KS}$ $\bigoplus_{\substack{t \in \mathcal{T} \\ d \in D}} (\mathcal{K}(dW(b))v'_t)$, the multiplication maps

$$\mu: (\mathcal{KS}) \otimes_{\mathcal{K}} (\mathcal{KB}) \to (\mathcal{KG})b,$$

$$\mu_1: (\mathcal{KS}_1) \otimes_{\mathcal{K}} (\mathcal{KB}') \to (\mathcal{KC})W(b)$$

are \mathcal{K} -algebra isomorphisms, etc.

Clearly

$$\operatorname{Irr}_{\mathcal{K}}((\mathcal{KS}) \otimes_{\mathcal{K}} (\mathcal{KB})) = \{ (Tr_{\mathcal{S}} * \psi) \mid \psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB}) \},$$

where $(Tr_{\mathcal{S}} * \psi)(s \otimes_{\mathcal{K}} \beta) = Tr_{\mathcal{S}}(s)\psi(\beta)$ for all $s \in \mathcal{S}$ and $\beta \in \mathcal{B}$ and for all $\psi \in Irr_{\mathcal{K}}(\mathcal{K}\mathcal{B})$. Thus $Irr_{\mathcal{K}}(b) = \{(Tr_{\mathcal{S}} * \psi)\mu^{-1} \mid \psi \in Irr_{\mathcal{K}}(\mathcal{K}\mathcal{B})\}$. Set $\theta_{\psi} = (Tr_{\mathcal{S}} * \psi)\mu^{-1}$ for all $\psi \in Irr_{\mathcal{K}}(\mathcal{K}\mathcal{B})$. We view $Irr_{\mathcal{K}}(\mathcal{K}\mathcal{B})$ as a subset of $Irr_{\mathcal{K}}(\mathcal{K}\mathcal{G})$ in the canonical fashion.

Fix $\psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB})$ and $t \in \mathcal{T}$ and let $g \in Kt$. Since D is the defect group of b, $\theta_{\psi}(g) = 0$ if $g_p \notin D$ by [5, IV, Lemma 2.4]. Hence, by Lemma 1.22, we have

(2.3)
$$\theta_{\psi}(g) = 0 \text{ if } gD \notin (G/D)_{p'}.$$

Suppose that $gD \in (G/D)_{p'}$. Then, by Lemma 1.22, $g_p \in D$ and $g_{p'} \in Kt$. Since G = HD, $g_{p'}$ is D-conjugate to an element $u \in H \cap (Kt) = Lt$ and $uD = gD \subseteq Kt$. By Lemma 2.16, there is an element $\sigma \in b + \mathcal{I}((\mathcal{O}L)b)$ such that $(ub)^{\sigma} = sv_t$, where $s \in \mathcal{S}$ and $\pi_{\mathcal{S}}^*(gb) = \pi_{\mathcal{S}}^*(ub) = s$. Also $C_D(u)b = C_D(t)b = C_{Db}(v_t)$ since $u \in Lt$ and we have $gD = uD = \bigcup_{f \in \mathcal{F}} (uC_D(u))^f$, where \mathcal{F} is a right transversal of $C_D(u)$ in D and the union is disjoint. Moreover if $d \in C_D(u)$, then $(udb)^{\sigma} = s((db)v_t)$ since $\sigma \in b + \mathcal{I}((\mathcal{O}L)b)$. Thus:

if
$$d \in C_D(u)$$
, then $\theta_{\psi}(ud) = Tr_{\mathcal{S}}(s)\psi((db)v_t)$, where $\pi_{\mathcal{S}}^*((ud)b) = s$; and

(2.4)
$$\sum_{d \in D} \theta_{\psi}(ud)\theta_{\psi}((ud)^{-1}) = |D: C_D(t)| Tr_{\mathcal{S}}(s)Tr_{\mathcal{S}}(s^{-1})$$

$$\cdot \sum_{d \in C_D(t)} (\psi((db)v_t)\psi((db)v_t)^{-1})).$$

Remark 2.17. Clearly (2.3) and (2.4) reduce to [16, Theorem 7] (cf. [5, V, Theorem 4.7]) when G = K and present a description of $Irr_{\mathcal{K}}(b)$ that differs from the description of $Irr_{\mathcal{K}}(b)$ given in [16, Section 3] and that is consonant with [16, Theorems 5 and 6] and with [15, Theorem A].

Utilizing $\Phi: \mathcal{KB}' \to \mathcal{KB}$ (the canonic extension of the isomorphism $\Phi: \mathcal{B}' \to \mathcal{B}$), we have $\operatorname{Irr}_{\mathcal{K}}(\mathcal{KB}') = \{ \psi \Phi | \psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB}) \}$.

Clearly $\operatorname{Irr}_{\mathcal{K}}(\mathcal{KS}_1 \otimes_{\mathcal{K}} \mathcal{KB}') = \{Tr_{\mathcal{S}_1} * (\psi\Phi) \mid \psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB})\}$, where $Tr_{\mathcal{S}_1} * (\psi\Phi)$ is as defined above for all $\psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB})$. Also $\operatorname{Irr}_{\mathcal{K}}(W(b)) = \{(Tr_{\mathcal{S}_1} * (\psi\Phi))\mu_1^{-1} \mid \psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB})\}$ and we set $\theta_{1\psi} = (Tr_{\mathcal{S}_1} * (\psi\Phi))\mu_1^{-1}$ for all $\psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB})$. Clearly the Morita equivalence above induces the bijection of $\operatorname{Irr}_{\mathcal{K}}(b)$ onto $\operatorname{Irr}_{\mathcal{K}}(W(b))$ that sends $\theta_{\psi} \mapsto \theta_{1\psi}$ for all $\psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{KB})$.

Note that $C_{G/D}(A) = C/D$ and let $g \in K_1t$. Then, as above,

(2.5)
$$\theta_{1\psi}(g) = 0 \text{ if } gD \notin (C/D)_{p'}.$$

Suppose that $gD \in (C/D)_{p'}$. Then, as above, gD = uD for some $u \in (L_1t) \cap C_{p'}$ and $uD = \bigcup_{f \in \mathcal{F}} (uC_D(u))^f$, where \mathcal{F} is a right transversal of $C_D(u)$ in D and the union is disjoint. Set $s_1 = \pi_{\mathcal{S}_1}^*(u)$, so that $\theta_{1\psi}(ud) = Tr_{\mathcal{S}_1}(s_1)\psi((db)v_t)$ for all $d \in C_D(u)$. Consequently,

(2.6)
$$\sum_{d \in D} \theta_{1\psi}(ud)\theta_{1\psi}((ud)^{-1}) = |D:C_D(t)|Tr_{\mathcal{S}_1}(s_1)Tr_{\mathcal{S}_1}(s_1^{-1})$$
$$\cdot \sum_{d \in C_D(t)} (\psi((db)v_t)\psi(((db)v_t)^{-1}))$$

and

(2.7)
$$\sum_{d \in D} \theta_{\psi}(ud)\theta_{1\psi}((ud)^{-1}) = |D:C_{D}(t)|(Tr_{\mathcal{S}}(s))(Tr_{\mathcal{S}_{1}}(s_{1}^{-1}))$$
$$\cdot \sum_{d \in C_{D}(t)} (\psi((db)v_{t})\psi(((db)v_{t})^{-1})),$$

where $\pi_{\mathcal{S}_1}^*(ud) = s$ and $\pi_{\mathcal{S}_1}^*((ud)) = s_1$, for all $d \in D$.

Recall that $\Omega = \langle c(t_1L_1, t_2L_1)|t_1, t_2 \in \mathcal{T} \rangle$ is a subgroup of \mathcal{O}^{\times} of order n dividing m so that (n, p) = 1. Let $\gamma : \Omega \to \mathcal{O}^{\times}$ denote the inclusion linear character (such that $\omega \mapsto \omega$ for all $\omega \in \Omega$).

We inflate $c \in Z^2(H_1/L_1, \mathcal{O}^{\times})$ to an element $\hat{c} \in Z^2(G, \mathcal{O}^{\times})$, where $\hat{c}(k_1t_1, k_2t_2) = c(t_1L_1, t_2L_1)$ for all $t_1, t_1 \in \mathcal{T}$ and all $k_1, k_1 \in K$.

Using $\hat{c}^{-1} \in Z^2(G, \mathcal{O}^{\times})$, we construct the group $\hat{G} = \Omega \tilde{\times} G$ as in Lemma 1.2(d), where $|\hat{G}| = n|G|$. Note that

$$(\omega_1, k)(\omega_2, g) = (\omega_1 \omega_2, kg), \qquad (\omega_2, g)(\omega_1, k) = (\omega_1 \omega_2, gk)$$

and

$$(\omega_2, g)(\omega_1, k)(\omega_2, g)^{-1} = (\omega_1, gkg^{-1})$$

for all $\omega_1, \omega_2 \in \Omega$, all $g \in G$ and all $k \in K$ since $\hat{c}(g,h) = 1$ if $g \in K$ or $h \in K$. Thus $\hat{K} = \{(1,k)|k \in K\}$, $\hat{L} = \{(1,\ell)|\ell \in L\}$ and $\hat{D} = \{(1,d)|d \in D\}$ are normal subgroups of \hat{G} and are isomorphic, in the obvious way: $(x \mapsto (1,x))$, to K, L, D respectively. Let \hat{b} denote the image of $b \in Z(\mathcal{O}L)$ in $\mathcal{O}\hat{L}$ under the above isomorphism $L = \hat{L}$. Thus \hat{b} is a \hat{G} -stable block idempotent of $\mathcal{O}\hat{L}$ and of $\mathcal{O}\hat{K}$ with defect group $Z(\hat{D})$ in $\mathcal{O}\hat{L}$ and defect group \hat{D} in $\mathcal{O}\hat{K}$. Here $C_{\hat{G}}(\hat{D}) = i(\Omega) \times \hat{L}$ and $\hat{D}C_{\hat{G}}(\hat{D}) = i(\Omega) \times \hat{K}$, where i is described in Lemma 1.2(d).

Let $\hat{\gamma} = \gamma \circ i^{-1} : i(\Omega) \to \mathcal{O}^{\times}$ denote the linear character of $i(\Omega)$ corresponding to $\gamma : \Omega \to \mathcal{O}^{\times}$ and set $\hat{e} = \frac{1}{n} \sum_{\omega \in \Omega} \omega^{-1}(\omega, 1)$ so that \hat{e} is the \hat{G} -stable block idempotent of $\mathcal{O}(\hat{D}(\hat{G}(\hat{D})))$ with defect group \hat{D} and $\hat{e}\hat{b}$ is also a block idempotent of $\mathcal{O}(\hat{D}C_{\hat{G}}(\hat{D}))$ with defect group \hat{D} and $\hat{e}\hat{b}$ is also a block idempotent of $\mathcal{O}(\hat{G}(\hat{D}))$ with defect group \hat{D} .

Let $\hat{\theta} \in \operatorname{Irr}_{\mathcal{K}}(\hat{b})$, where \hat{b} is a block of \hat{K} correspond to $\theta \in \operatorname{Irr}_{\mathcal{K}}(b)$ so that $\hat{D} \leq \operatorname{Ker}(\hat{\theta})$. Clearly $\hat{G} = \bigcup_{t \in \mathcal{T}} (i(\Omega) \times \hat{K})(1,t)$ and the union is disjoint.

Let $\hat{L}_1 = \{(1, \ell_1) \mid \ell_1 \in \hat{L}_1\}$ and $\hat{K}_1 = \{(1, k_1) \mid k_1 \in K_1\}$, so that $\hat{L}_1 = \hat{L}_1$ and $\hat{L}_1 = \hat{L}_1$ and

Since $\hat{c}(g_1^a,g_2^a)=\hat{c}(g_1,g_2)$ for all $g_1,g_1\in G$ and all $a\in A$ by Lemma 2.11, A acts on the right on \hat{G} according to: $(\omega,g)^a=(\omega,g^a)$ for all $\omega\in\Omega,\ g\in G$ and $a\in A$. Here $\hat{D}\leq C_{\hat{G}}(A)=i(\Omega)\times C_G(A)$ and $C_{\hat{G}}(A)=\bigcup_{t\in\mathcal{T}}(i(\Omega)\times\hat{K}_1)(1,t)$, where the union is disjoint. Also $C_{\hat{G}}(A)\cap C_{\hat{G}}(\hat{D})=i(\Omega)\times\hat{L}_1$ and $(\hat{D}C_{\hat{G}}(D))\cap C_{\hat{G}}(A)=i(\Omega)\times\hat{K}_1$. Moreover $\widehat{W}(b)$ (the image of W(b) under the isomorphism $L=\hat{L}$) is a $C_{\hat{G}}(A)$ -stable block of $\mathcal{O}\hat{K}_1$ with defect group \hat{D} , $W(\hat{b})=\widehat{W}(b)$ and $\widehat{eW}(b)$ is a $C_{\hat{G}}(A)$ -stable block idempotent of $i(\Omega)\times\hat{K}_1=\hat{D}(C_{\hat{G}}(A)\cap C_{\hat{G}}(D))$ with defect group \hat{D} . Thus $\widehat{eW}(b)$ is a block idempotent of $\mathcal{O}C_{\hat{G}}(A)$ with defect group \hat{D} by [5, V, Lemma 3.10]. Set $\hat{\theta}_1=\pi(\hat{K},A)(\hat{\theta})$ so that $\hat{\theta}_1\in \operatorname{Irr}_{\mathcal{K}}(W(\hat{b}))$.

Lemma 2.18. Let $\hat{\pi}_{\mathcal{S}}^* : \hat{G} \to \mathcal{S}^{\times}$ be such that $(\omega, g) \mapsto \omega \pi_{\mathcal{S}}^*(g)$ for all $\omega \in \Omega$ and all $g \in G$ and set $\hat{\theta}^* = Tr_{\mathcal{S}} \circ \hat{\pi}_{\mathcal{S}}^* : \hat{G} \to \mathcal{O}$. Then

- (a) $\hat{\pi}_{\mathcal{S}}^*$ is a group homomorphism with $\hat{D} \leq Ker(\hat{\pi}_{\mathcal{S}}^*) = Ker(\hat{\theta}^*)$;
- (b) $\hat{\pi}_{\mathcal{S}} = \operatorname{Res}_{\hat{K}}^{\hat{G}}(\hat{\pi}_{\mathcal{S}}^*) : \hat{K} \to \mathcal{S}^{\times}$ is an irreducible representation of \hat{K} over \mathcal{K} and $\hat{\pi}_{\mathcal{S}}^*$ is an irreducible respresentation of \hat{G} over \mathcal{K} with character $\hat{\theta}^*$;
- (c) $\hat{\theta}^*$ lies in the A-stable block $\hat{e}\hat{b}$ of $\mathcal{O}\hat{G}$ and $\hat{\theta}^*(\hat{x}) = 0$ for all $\hat{x} \in \hat{G}$ such that $\hat{x}\hat{D} \not\in (\hat{G}/\hat{D})_{p'};$
- (d) $\operatorname{Res}_{i(\Omega)\times\hat{K}}^{\hat{G}}(\hat{\theta}^*) = \hat{\gamma}\times\hat{\theta}$ is an A-stable irreducible character that lies in the block $\hat{e}\hat{b}$ of $\mathcal{O}(i(\Omega) \times \hat{K})$ with defect group \hat{D} ; and
- (e) $\pi(\hat{G}, A)(\hat{\theta}^*) \in \operatorname{Irr}_{\mathcal{K}}(W(\hat{e}\hat{b}))$ and $\operatorname{Res}_{i(\Omega) \times \hat{K}}^{C_{\hat{G}}(A)}(\pi(\hat{G}, A)(\hat{\theta}^*)) = \hat{\gamma} \times \hat{\theta}_1$ is an irreducible character that lies in the block $\hat{e}W(\hat{b})$ of $\mathcal{O}(i(\Omega) \times \hat{K}_1)$ with defect group ĥ.

Proof. Clearly Lemma 2.13 and [5, IV, Lemma 2.4] furnish a proof of (a)–(d). For (e), note that $\operatorname{Res}_{i(\Omega)\times\hat{K}}^{\hat{G}}(\hat{\theta}^*) = \hat{\gamma}\times\hat{\theta}$ and that $\pi(i(\Omega)\times\hat{K},A)(\hat{\gamma}\times\hat{\theta}) = \hat{\gamma}\times\hat{\theta}_1$ is an irreducible character that lies in the block $\hat{e}W(\hat{b})$ of $\mathcal{O}(i(\Omega) \times \hat{K}_1)$ since $\pi(K, A)(G) = \theta_1$. Now [11, Theorem A(b)] implies that $\operatorname{Res}_{i(\Omega) \times \hat{K}_1}^{C_{\hat{G}}(A)}(\pi(\hat{G}, A)(\hat{\theta}^*)) =$ $\hat{\gamma} \times \hat{\theta}_1$ and we are done.

Lemma 2.19. Let $\widehat{\pi_{\mathcal{S}_1}^*}: C_{\hat{G}}(A) \to \mathcal{S}_1^{\times}$ be such that $(\omega, g) \mapsto \omega \pi_{\mathcal{S}_1}^*(g)$ for all $\omega \in \Omega$ and all $g \in C_G(A)$ and set $\widehat{\theta_1} = Tr_{\mathcal{S}_1} \circ \widehat{\pi_{\mathcal{S}_1}} : C_{\hat{G}}(A) \to \mathcal{O}$. Then

- (a) $\widehat{\pi_{\mathcal{S}_1}^*}$ is a group homomorphism with $\widehat{D} \leq Ker(\widehat{\pi_{\mathcal{S}_1}^*}) = Ker(\widehat{\theta_1^*});$
- (b) $\operatorname{Res}_{\hat{K}_1}^{C_{\hat{G}}(A)}(\widehat{\pi_{\mathcal{S}_1}^*}) = \hat{\pi}_{\mathcal{S}_1} : \hat{K}_1 \to \mathcal{S}_1^{\times} \text{ is an irreducible representation of } \hat{K}_1 \text{ over}$ \mathcal{K} with character $\hat{\theta}_1$ and $\hat{\pi}_{\mathcal{S}_1}^*$ is an irreducible representation of $C_{\hat{G}}(A)$ over \mathcal{K} with character $\hat{\theta}_1^*$; (c) $\operatorname{Res}_{i(\Omega) \times \hat{K}_1}^{C_{\hat{G}}(A)}(\hat{\theta}_1^*) = \hat{\gamma} \times \hat{\theta}_1$;
- (d) $\pi(\hat{G}, A)(\hat{\theta}^*) = \lambda \hat{\theta}_1^*$ for a unique linear character λ of $C_{\hat{G}}(A)$ such that $i(\Omega) \times i(A)$ $\hat{K}_1 \leq Ker(\lambda);$
 - (e) $\hat{e}W(b) = W(\hat{e}\hat{b})$; and
- (f) $\hat{\theta}_1^* \in \operatorname{Irr}_{\mathcal{K}}(W(\hat{e}\hat{b}))$ and $\hat{\theta}_1^*(\hat{x}) = 0$ for all $\hat{x} \in C_{\hat{G}}(A)$ such that $\hat{x}\hat{D} \notin C_{\hat{G}}(A)$ $(C_{\hat{G}}(A)/D)_{p'}$.

Proof. Clearly (a)–(c) hold and Lemma 2.18(e) yields (d). We have seen that $\hat{e}W(\hat{b})$ is a block idempotent with defect group \hat{D} of both $\mathcal{O}(i(\Omega) \times \hat{K}_1)$ and $\mathcal{O}C_{\hat{G}}(A)$. Also $W(\hat{e}\hat{b})$ is a block idempotent of $\mathcal{O}C_{\hat{G}}(A)$ with defect group \hat{D} that, by Lemma 2.18(e), covers the $C_{\hat{G}}(A)$ -stable block $\hat{e}W(\hat{b})$ of $\mathcal{O}(i(\Omega) \times K_1)$. Thus (e) holds by [5, V, Lemma 3.10]. By (c), $\hat{\theta}_1^*$ lies in a block of $\mathcal{O}C_{\hat{G}}(A)$ that covers the block $\hat{e}W(\hat{b})$, and again [5, V, Lemma 3.10] and the proof of Lemma 2.18(c) yield (f).

Set $\hat{G} = \hat{G}/\hat{D}$ and let $-: \hat{G} \to \hat{G}$ denote the canonic group epimorphism. Clearly A induces an action on \hat{G} and $-:\hat{G}\to \hat{G}/\hat{D}$ is an A-epimorphism. Here $|\hat{G}| = n|G/D|, \ \hat{G} = \bigcup_{t \in \mathcal{T}} (\overline{i(\Omega)} \times \hat{K}) \overline{(1,t)},$ where the union is disjoint and $C_{\tilde{G}}(A) = C_{\tilde{G}}(A)$ $\overline{C_{\hat{G}}(A)} = C_{\hat{G}}(A)/\hat{D} = \bigcup_{t \in \mathcal{T}} \overline{(i(\Omega)} \times \overline{K_1})\overline{(1,t)}$, where the union is also disjoint.

Since $\hat{D} \leq Ker(\hat{\pi}_{\mathcal{S}}^*) = Ker(\hat{\theta}^*)$, we can view $\hat{\pi}_s^*$ and $\hat{\theta}^*$ as lying in an A-stable block of defect 0 of \hat{G} that is contained in the block $\hat{e}\hat{b}$ of \hat{G} since $\hat{\theta}^*(1) = r$, where $r_p = |G/D|_p = |\hat{G}/\hat{D}|_p$. Similar statements hold for $\pi_{\mathcal{S}_1}^*, \hat{\theta}_1^*, G_{\bar{G}}(A)$ and $C_{\hat{G}}(A)$.

Remark 2.20. Let $(\omega, kt) \in \hat{G} = \Omega \times G$, where $\omega \in \Omega$, $k \in K$, $t \in \mathcal{T}$ and let $kt = (kt)_p(kt)_{p'}$. Then $(kt)_p \in K$ since $|G/K|_p = 1$ and $(\omega, (kt)_{p'}) \in \hat{G}_{p'}$. Thus $(\omega, kt)_p = (1, (kt)_p)$, $(\omega, kt)_{p'} = (\omega, (kt)_{p'})$. It follows that $(\omega, kt)\hat{D} \in (\bar{G})_{p'}$ if and only if $(kt)D \in (G/D)_{p'}$. A similar result holds for $(\omega, k_1t) \in C_{\hat{G}}(A) = \Omega \times C$, where $\omega \in \Omega$, $k_1 \in K_1$, $t \in \mathcal{T}$.

As in Lemma 2.19(d), let λ be the unique linear character of $C_{\hat{G}}(A)$ with $i(\Omega) \times \hat{K}_1 \leq Ker(\lambda)$ such that $\pi(\hat{G}, A)(\hat{\theta}^*) = \lambda \hat{\theta}_1^*$. Since $\hat{G} = \hat{K}C_{\hat{G}}(A)$, there is a unique linear character $\hat{\lambda}$ of \hat{G} such that $i(\Omega) \times \hat{K} \leq Ker(\hat{\lambda})$ and $\operatorname{Res}_{C_{\hat{G}}(A)}^{\hat{G}}(\hat{\lambda}) = \lambda$. It follows that $\hat{\lambda}^{-1}\hat{\theta}^* \in \operatorname{Irr}_{\mathcal{K}}(\hat{e}\hat{b})^A$ and $\pi(\hat{G}, A)(\hat{\lambda}^{-1}\hat{\theta}^*) = \hat{\theta}_1^*$. At this point, for each $t \in \mathcal{T}$, we replace w_t by $\hat{\lambda}(t)w_t$ and v_t by $\hat{\lambda}(t)v_t$ in Proposition 2.1. Then, since $w_t = s_t\alpha_t$ where $s_t \in \mathcal{S}^{\times}$ and $\alpha_t \in b + \mathcal{I}(\mathcal{O}L)b$, s_t is replaced by $\lambda(t)s_t$ for each $t \in \mathcal{T}$. With this replacement, we obtain the new \mathcal{O} -linear map $\tilde{\pi}_{\mathcal{S}}^* : \mathcal{O}G \to \mathcal{S}$ sending kt to $\pi_{\mathcal{S}}(kb)\hat{\lambda}(t)^{-1}s_t^{-1}$ so that $Tr_{\mathcal{S}}(\pi_{\mathcal{S}}^*(kt)) = (\hat{\lambda}^{-1}\hat{\theta}^*)(kt)$ for all $k \in K$ and $t \in \mathcal{T}$. Consequently after replacement, we may assume that

(2.8)
$$\pi(\hat{G}, A)(\hat{\theta}^*) = \hat{\theta}_1^*.$$

We have set

$$\mathcal{B} = C_{(\mathcal{O}G)b}(\mathcal{S}) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}D)b)v_t) = \bigoplus_{\substack{t \in \mathcal{T} \\ d \in D}} \mathcal{O}(db)v_t,$$

so that \mathcal{B} can be viewed as an $\mathcal{N} = D \times (H_1/L_1)$ -twisted group \mathcal{O} -algebra with \mathcal{O} -bases $\{(db)v_t|d\in D,\ tL_1\in H_1/L_1\}$, where

$$((d_1b)v_{t_1})((d_2b)v_{t_2}) = c(t_1L_1, t_2L_1)(d_1(^{t_1}d_2))v_{t_3}$$

if $t_1t_2 \in t_3L_1$ for a unique $t_3 \in \mathcal{T}$ and $\mathcal{B}_{(d,tL_1)} = \mathcal{O}(db)v_t$ for all $d \in D$ and $t \in \mathcal{T}$. Also we have set $\mathcal{B}' = C_{(\mathcal{O}C)W(b)}(\mathcal{S}_1) = \bigoplus_{t \in \mathcal{T}} (((\mathcal{O}D)W(b))v_t')$ and we view \mathcal{B}' as an $\mathcal{N} = D \rtimes (H_1/L_1)$ -twisted group \mathcal{O} -algebra, where $\mathcal{B}'_{(d,tL_1)} = \mathcal{O}(dW(b))v_t'$ for all $d \in D$ and $t \in \mathcal{T}$. Thus $\Phi : \mathcal{B}' \to \mathcal{B}$ is an \mathcal{N} -graded \mathcal{O} -algebra isomorphism sending $(dW(b))v_t'$ to $(db)v_t$ for all $d \in D$ and $t \in \mathcal{T}$.

We inflate $c \in Z^2(H_1/L_1, \mathcal{O}^{\times})$ to an element $\tilde{c} \in Z^2(\mathcal{N}, \mathcal{O}^{\times})$, where

$$\tilde{c}((d_1, t_1L_1), (d_2, t_2L_1)) = c(t_1L_1, t_2L_2)$$

for all $d_1, d_2 \in D$ and all $t_1, t_2 \in \mathcal{T}$. Then, using \tilde{c} and Lemma 1.2, we obtain a finite group $\tilde{\mathcal{N}} = \Omega \tilde{\times} \mathcal{N}$, where $|\tilde{\mathcal{N}}| = n|D|m$ and we let A act trivially on $\tilde{\mathcal{N}}$. Here $\tilde{D} = \{(1, (d, L_1)) | d \in D\}$ is a normal Sylow p-subgroup of $\tilde{\mathcal{N}}$, $D = \tilde{D}$ via the map $d \mapsto (1, (d, L_1))$ for all $d \in D$, $\{(\omega, (1, tL_1)) | \omega \in \Omega, t \in \mathcal{T}\}$ is a complement to D and $\tilde{\mathcal{N}} = \bigcup_{t \in \mathcal{T}} (i(\Omega) \times \tilde{D})(1, (1, tL_1))$, where the union is disjoint.

Set $\tilde{e} = \frac{1}{n} \sum_{i} \omega^{-1}(\omega, (1, L_1)) \in \mathcal{O}i(\Omega)$, so that $(\omega, (d, tL_1))\tilde{e} = \omega(1, (d, tL_1))\tilde{e}$ for all $\omega \in \Omega$, $d \in D$ and $t \in \mathcal{T}$. Then \tilde{e} is an $\tilde{\mathcal{N}}$ -stable block idempotent of $\mathcal{O}i(\Omega)$ (corresponding to $\tilde{\gamma} = \gamma \circ i^{-1}$), $\tilde{e} \in Z(\mathcal{O}\tilde{\mathcal{N}})$, $(\mathcal{O}\tilde{\mathcal{N}})\tilde{e} = \bigoplus_{\substack{d \in D \\ t \in \mathcal{T}}} \mathcal{O}(1, (d, tL_1))\tilde{e}$ in \mathcal{O} -mod and the \mathcal{O} -linear map

$$\Psi: (\mathcal{O}\tilde{\mathcal{N}})\tilde{e} \to \mathcal{B}' = \bigoplus_{\substack{d \in D \\ t \in \mathcal{T}}} \mathcal{O}((dW(b))v_t')$$

such that $(1,(d,tL_1))\tilde{e} \mapsto (dW(b))v'_t$ for all $d \in D$ and $\in \mathcal{T}$ is an \mathcal{O} -algebra isomorphism.

Let A act diagonally on the right on $\hat{\bar{G}} \times \tilde{\mathcal{N}}$ so that $C_{\bar{\bar{G}} \times \mathcal{N}}(A) = C_{\bar{\bar{G}}}(A) \times \tilde{\mathcal{N}}$. Set $\Delta = \{((\omega, kt), (\omega^{-1}, (d, tL_1))) | \omega \in \Omega, d \in D, k \in K \text{ and } t \in \mathcal{T}\}.$

The following result is easily verified:

Lemma 2.21. (a) Δ is an A-invariant subgroup of $\tilde{G} \times \tilde{\mathcal{N}}$ with $|\Delta| = n|G|$ and $C_{\Delta}(A) = \{(\overline{(\omega, k_1 t)}, (\omega^{-1}, (d, tL_1))) | \omega \in \Omega, d \in D, t \in \mathcal{T} \text{ and } k_1 \in K_1\};$

(b) $(i(\Omega) \times i(\Omega)) \cap \Delta = \{(\overline{(\omega, 1)}, (\omega^{-1}, (1, L_1))) | \omega \in \Omega\} \leq Z(\Delta) \cap C_{\Delta}(A)$ and the map of $\Omega \to (i(\Omega) \times i(\Omega)) \cap \Delta$ such that $\omega \mapsto (\overline{(\omega, 1)}, (\omega^{-1}, (1, L_1)))$ for all $\omega \in \Omega$ is an isomorphism; and

(c) $\mathcal{D} = \{(\overline{(1,1)}, (1,(d,L_1)))|d \in D\} \leq \Delta$ and the map of $D \to \mathcal{D}$ such that $d \mapsto (\overline{(1,1)}, (1,(d,L_1)))$ for all $d \in D$ is an isomorphism.

Recall the \mathcal{O} -algebra isomorphism $\Phi: \mathcal{B}' \to \mathcal{B}$ and $\Psi: (\mathcal{O}\tilde{\mathcal{N}})\tilde{e} \to \mathcal{B}'$. Thus $\operatorname{Irr}_{\mathcal{K}}((\mathcal{K}\tilde{\mathcal{N}})\tilde{e}) = \{\psi\Phi\Psi|\psi\in\operatorname{Irr}_{\mathcal{K}}(\mathcal{K}\mathcal{B})\}$. Also $\hat{\theta}^* = Tr_{\mathcal{S}}\circ\hat{\pi}_{\mathcal{S}}^*\in\operatorname{Irr}_{\mathcal{K}}(\hat{G})$ and $\hat{\theta}_1^* = Tr_{\mathcal{S}_1}\circ\hat{\pi}_{\mathcal{S}_1}^*\in\operatorname{Irr}_{\mathcal{K}}(C_{\hat{G}}(A))$. Let $\hat{\bar{\theta}}^*$ and $\hat{\theta}_1^*$ denote the irreducible characters of $\hat{\bar{G}}=\hat{G}/\hat{D}$ and of $C_{\hat{\bar{G}}}(A)=C_{\hat{G}}(A)/\hat{D}$ from which $\hat{\theta}^*$ and $\hat{\theta}_1^*$ are inflated, respectively. Thus $\hat{\bar{\theta}}^*\times(\psi\Phi\Psi)\in\operatorname{Irr}_{\mathcal{K}}(\hat{\bar{G}}\times\tilde{\mathcal{N}})$ and $\hat{\bar{\theta}}_1^*\times(\psi\Phi\Psi)\in\operatorname{Irr}_{\mathcal{K}}(C_{\hat{\bar{G}}\times\tilde{\mathcal{N}}}(A))$ and $\Delta\cap i(\Omega)\leq Ker(\hat{\bar{\theta}}^*\times(\psi\Phi\Psi))\cap Ker(\hat{\bar{\theta}}_1^*\times(\psi\Phi\Psi))$ for all $\psi\in\operatorname{Irr}_{\mathcal{K}}(\mathcal{K}\mathcal{B})$.

Let $\omega \in \Omega$, $t \in \mathcal{T}$, $d \in D$, $k \in K$ and $k_1 \in K_1$ and $\psi \in \operatorname{Irr}_{\mathcal{K}}(\mathcal{B})$. Note that $\overline{(\omega, kt)} \in \overline{\hat{G}}_{p'}$ if and only if $k_1tD \in (G/D)_{p'}$ and $\overline{(\omega, k_1t)} \in C_{\overline{\hat{G}}}(A)_{p'}$ if and only if $k_1tD \in (C_G(A)/D)_{p'}$ by Remark 2.20. Also $(\overline{(\omega, kt)}, (\omega^{-1}, (d, tL_1))) \in \Delta$ and $(\overline{(\omega, k_1t)}, (\omega^{-1}, (d, tL_1))) \in C_{\Delta}(A)$.

Thus we have

(2.9)
$$(\hat{\bar{\theta}}^* \times (\psi \Phi \Psi))(\overline{(\omega, kt)}, \ (\omega^{-1}, (d, tL_1)))$$

$$= \begin{cases} 0 & \text{if } ktD \notin (G/D)_{p'}, \\ (Tr_{\mathcal{S}^o}\pi_{\mathcal{S}}^*)((kt)b)\psi((db)v_t) & \text{if } ktD \in (G/D)_{p'}; \end{cases}$$

and

$$(2.10) \qquad (\bar{\theta}_1^* \times (\psi \Phi \Psi))(\overline{(\omega, k_1 t)}, (\omega^{-1}, (d, tL_1)))$$

$$= \begin{cases} 0 & \text{if } k_1 tD \notin (C/D)_{p'}, \\ (Tr_{\mathcal{S}_1^o} \pi_{\mathcal{S}_1}^*)((k_1 t)W(b))\psi((db)v_t) & \text{if } k_1 tD \in (C/D)p'. \end{cases}$$

Consequently

(2.11) if $(kt)D \in (G/D)_{p'}$, then

$$\begin{split} &\sum_{d \in D} ((\bar{\hat{\theta}}^* \times (\psi \Phi \Psi))(\overline{(\omega, kt)}, (\omega^{-1}, (d, tL_1))) \\ &\cdot ((\bar{\hat{\theta}}^* \times \psi \Phi \Psi)((\overline{(\omega, kt)}, (\omega^{-1}, dtL_1))^{-1})) \\ &= ((Tr_{\mathcal{S}^o} \pi_{\mathcal{S}}^*)((kt)b))((Tr_{\mathcal{S}^o} \pi_{\mathcal{S}}^*)(((kt)b)^{-1})) \\ &\cdot |D: C_D(t)| \sum_{d \in C_D(t)} (\psi((db)v_t))(\psi(((db)v_t)^{-1})); \end{split}$$

$$(2.12)$$
 if $k_1 t D \in (C/D)_{p'}$, then

$$\begin{split} \sum_{d \in D} & ((\bar{\theta}_{1}^{*} \times \psi \Phi \Psi)(\overline{(\omega, k_{1}t)}, (\omega^{-1}, (d, tL_{1}))) \\ & \cdot ((\bar{\theta}_{1}^{*} \times \psi \Phi \Psi)(\overline{(\omega, k_{1}t)}, (\omega^{-1}, (d, tL_{1}))^{-1})) \\ & = ((Tr_{\mathcal{S}_{1}^{o}} \pi_{\mathcal{S}_{1}}^{*})((k_{1}t)w(b)))((Tr_{\mathcal{S}_{1}^{o}} \pi_{\mathcal{S}_{1}}^{*})(((k_{1}t)W(b))^{-1})) \\ & \cdot |D: C_{D}(t)| \sum_{d \in C_{D}(t)} (\psi(db)v_{t})(\psi(((db)v_{t})^{-1})); \end{split}$$

and

(2.13)
$$\sum_{d \in D} ((\bar{\hat{\theta}}^* \times (\psi \Phi \Psi))(\overline{(\omega, k_1 t)}, (\omega^{-1}, (d, tL_1))) \\ \cdot ((\bar{\hat{\theta}}^*_1 \times \psi \Phi \Psi))((\overline{(\omega, k_1 t)}, (\omega^{-1}, (d, tL_1))^{-1})) \\ = ((Tr_{S^0} \pi_{\mathcal{S}}^*)((k_1 t)b))((Tr_{S_1^0} \pi_{S_1})(((k_1 t)W(b))^{-1})) \\ \cdot |D: C_D(t)| \sum_{d \in C_D(t)} (\psi((db)v_t))(\psi(((db)v_t)^{-1})).$$

Now compare (2.3), (2.4), (2.5), (2.6), (2.9), (2.10), (2.11) and (2.12).

Thus we conclude that $(\operatorname{Res}_{\Delta}^{\tilde{G}\times\tilde{\mathcal{N}}}(\bar{\theta}^*\times(\psi\Phi\Psi)), \operatorname{Res}_{\Delta}^{\hat{G}\times\mathcal{N}}(\bar{\theta}^*\times(\psi\Phi\Psi)))_{\Delta} = 1$ so that $\operatorname{Res}_{\Delta}^{\tilde{G}\times\tilde{\mathcal{N}}}(\bar{\theta}^*\times(\psi\Phi\Psi)) \in \operatorname{Irr}_{\mathcal{K}}(\Delta)$. Similarly $\operatorname{Res}_{C_{\Delta}(A)}^{C_{\bar{G}}(A)\times\tilde{\mathcal{N}}}(\bar{\theta}^*_1\times(\psi\Phi\Psi)) \in \operatorname{Irr}_{\mathcal{K}}(C_{\Delta}(A))$.

Since we have assured that $\pi(\hat{G}, A)(\hat{\theta}^*) = \hat{\theta}_1^*$, we conclude that $\pi(\bar{G}, A)(\bar{\theta}^*) = \bar{\theta}_1^*$. Then [11, Theorem A(b)] (with $H = \Delta$) implies that

$$\begin{split} \pi(\Delta,A)(\operatorname{Res}_{\Delta}^{\bar{\hat{G}}\times\tilde{\mathcal{N}}}(\bar{\hat{\theta}}^*\times(\psi\Phi\Psi))) &= \operatorname{Res}_{C_{\Delta}(A)}^{C_{\bar{\hat{G}}}(A)\times\tilde{\mathcal{N}}}(\pi(\bar{\hat{G}}\times\tilde{\mathcal{N}},A)(\bar{\hat{\theta}}^*\times(\psi\Phi\Psi))) \\ &= \operatorname{Res}_{C_{\Delta}(A)}^{C_{\bar{\hat{G}}}(A)\times\tilde{\mathcal{N}}}(\bar{\hat{\theta}}_1^*\times(\psi\Phi\Psi)). \end{split}$$

Hence $\rho = (\operatorname{Res}_{C_{\Delta}(A)}^{\bar{G}}(\hat{\theta}^* \times (\psi \Phi \Psi)), \operatorname{Res}_{C_{\Delta}(A)}^{C_{\bar{G}}(A) \times \tilde{N}}(\hat{\theta}_1^* \times (\psi \Phi \Psi)))_{C_{\Delta}(A)}$ is relatively prime to q. However (2.7) and (2.13) imply that $\rho = (\operatorname{Res}_C^G(\theta_{\psi}), \theta_{1\psi})_C$. Consequently $\pi(G, A)(\theta_{\psi}) = \theta_{1\psi}$ by [10, Theorem 13.1(c)] which concludes our proof of Theorem 2.

References

- R. Brauer, zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Zeit. 63 (1956), 406-444. MR 17:824g
- R. Brauer, zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Zeit. 72 (1959), 25-46. MR 21:7258
- E.C. Dade, Isomorphisms of Clifford extensions, Ann. of Math. 92 (1970), 375-433. MR 42:4645
- 4. E.C. Dade, Group-graded rings and modules, Math. Z. 174 (1980), 241-262. MR 82c:16028
- W. Feit, "The Representation Theory of Finite Groups", North-Holland, New York, 1982.
 MR 83g:20001
- G. Glauberman, Correspondence of characters for relatively prime operator groups, Canad.
 J. Math. 20 (1968), 1465-1488. MR 38:1189
- 7. D. Gorenstein, "Finite Groups", Harper and Row, New York, 1968. MR 38:229
- M.E. Harris and M. Linckelmann, On the Glauberman and Watanabe correspondence for blocks of finite p-solvable groups, Trans. of the A.M.S. 354 (9) (2002), 3435-3453. MR 2003c:20008

- 9. B. Huppert, "Endliche Gruppen I", Springer-Verlag, Berlin, 1967. MR 37:302
- I.M. Isaacs, "Character Theory of Finite Groups", Academic Press, New York, 1976. MR 57:417
- 11. I.M. Isaacs and G. Navarro, Character correspondences and irreducible induction and restriction, J. of Algebra 140 (1991), 131-140. MR 93a:20015
- 12. R. Knörr, Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53-60. MR 53:5723
- 13. S. Koshitani, personal communication.
- S. Koshitani and G.O. Michler, Glauberman Correspondence of p-Blocks of Finite Groups, J. of Algebra 243 (2001), 504-517. MR 2002g:20024
- 15. B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147-168. MR 86c:20015
- 16. W.F. Reynolds, Blocks and normal subgroups, Nagoya Math. J. 22 (1963), 15-32. MR $\bf 27$:3690
- 17. J.-P. Serre, "Corps locaux", Hermann, Paris, 1962.
- J. Thevenaz, "G-Algebras and Modular Representation Theory", Oxford University Press, New York, 1995. MR 96j:20017
- A. Watanabe, The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra (1999), 548-565. MR 2000f:20015

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 E-mail address: harris@math.umn.edu